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VGD Final Report: Project Overview

Report Overview

Because KMS no longer has on its staff anyone capable of writing a final report for VGD, in
January 1992, Innovation Associates informed NASA/JPL that they would write the final VGD
report for KMS at no cost to NASA or KMS.

This document represents that effort and is the final report for the VGD project, NAST-1066. It
documents the work done on the project up to the point at which all project work was teminated
due to lack of project funds. Up until the point when contract funds were exhausted, work on the
VGD project was very promising and proceeding well. However, due to circumstances beyond
the control of the Technical Staff on the VGD project, unanticipated Overhead and G&A rate
increases occured at KMS during both 1990 and 1991. These increases, resulted in a) inadequate
contract funding being available to perform the original statement of work, b) unexpecied loss of
staff performing the work, and c) the abrupt layoff of remaining project staff when a DOE-
mandated cost accounting changes in mid 1992 caused Overhead and G&A rates to again
increase thus exhausting remaining contract funds without prior warning.

Starting in January 1991, KMS Industries made good faith efforts fulfill its commitments to its
R&D customers. Specifically, it attempted to shield its R&D contracts from the affects of the
loss of a $16 million DOE ICF contract by requesting that NASA and other government agencies
novate KMS Fusion’s R&D contracts to KMS Advanced Products, Inc. and by maintaining
separate overhead and G&A rates for the two companies. The novation requests dragged on
without resolution for six months. At the end of March 1991, KMS suspended work on the VGD
project because if the novation request was not granted, all available funds on the contract were
already exhausted.
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Section A
Project Accomplishments by Quarter

Quarterly Report #1

A general design for the VGD system was provided to the technical contract monitor to clarify
the work that is to be performed under the VGD contract.

Quarterly Report #2

Methods for generating a sinusoidal projection pattern required by the VGD SURPHACE
Camera are described. Techniques are reported for eliminated determental effects due to higher
order harmonic errors in producing the sinusoidal slides.

Quarterly Report #3

A design is provided for a new ranging device, i.e, the SUrface Reconstruction by PHA se-shifted
CosinEs (SURPHACE) Camera, which uses phase-shifted structured lighting to triargulate on
the points of the surface of an object. The camera works with a simple light projector and a CCD
camera and records registered range and intensity data.

Quarterly Report #4

Methods for generating a sinusoidal projection pattern required by the VGD SURPHACE
Camera are described. Techniques are reported for eliminated determental effects due to higher
order harmonic errors in producing the sinusoidal slides.

Quarterly Report #5

A more complete design of the VGD system is presented, together with a description of the
calibration routines necessary to calibrate the VGD SURPHACE Camera and routines to
manipulate surface data capture by the SURPHACE Camera. Two representations are presented
for storing surface range/texture data, i.e., one in which surface data is stored as a set of pixel
meshes, and the second in which data is stored as a polygon mesh.

1991 Unreported Work

The work on calibrating the camera was successfully completed and work was started in
developing routines to patch together different views to obtain a complete surface representation.
Because the staff working on these tasks quit with minimal notice, this has not been previously
documented.
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Section B
Project Task Status Review
(15-May-91)

Task I.1: Implement Stereo Reconstruction using Structured Lighting.

Proposal Objective: To develop a simple approach for obtaining
correlated range and texture data.

Work Accomplished: KMS developed a phase-shift structured lighting
system that uses a special projector with two stereo
cameras to input texture and range data.

Significant Accomplishments: KMS has developed good camera calibration routines
and demonstrated feasibility of approach.

Technical Problems: KMS had to move from a hand-held light-weight
system to a tripod-held system because the combined
weight of the cameras, the camera mounts, and the
phase shift structured lighting assembly is too large
for a the unit to be steadily held in the hand. When
the project was terminated due to lack of funds, the
system still did not provide the accuracy which was
originally envisioned and range images were still
noisy.

B-1
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Task 1.2: Investigate Stereo using Existing Lighting

Proposal Objective:

Work Accomplished:

Technical Problems:

Effects on Project:

To develop a simple approach for obtaining
correlated range and texture data without using
projected lighting.

KMS reviewed existing techniques to see v-here new
approaches might be possible.

After reviewing existing techniques, KMS
determined that the technical issues involved were
too complicated for us to adequately address this
problem and that there would be inadequate hours
available on the contract for us to devore further
effort to seeking a simple approach for correlating
range and texture data without using projected
lighting.

Little. This part of the task was a best effort.
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Task II: Implement Software for Viewpoint Determination

Proposal Objective:

Work Accomplished:

Significant Accomplishments:

Technical Problems:

To develop a approach for determining the transform
between different views.

This work falls out from the camera calibration code
developed for surface reconstruction. We still have
to implement a small amount of code to complete the
task.

The KMS approach allows the camera viewpoints to
be correlated (matched to each other) using existing

surface features.

None known.
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Task lll.1: Implement Software for Manipulating VGD Database

Proposal Objective: To develop an efficiently accessed (i.e., surface
quadtree) representation for surface data.

Work Accomplished: At the time contract work halted due to lack of funds,
the database had not been implemented. KMS
intended to provide a database that was simpler to
implement than the surface quadtree databaase and
which met the basic technical requirements.

Technical Problems: KMS determined that there was inadequate labor
time to implement the database as originally
designed. Morover, the original database clesign did
not necessarily provide a good represen-ation for
both surface and texture data.

Effects on Project: Little effect, since the database that is to be used will
play a similar role.

B4
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Task Ill.2: Inputting Raw Surface Data Into the VGD Database.

Proposal Objective: To develop techniques for loading data into the VGD
database.

Work Accomplished: KMS was able to load both texture and range data.

Technical Problems: None.

Significant Accomplishments: The KMS approach allows texture/range data to be
loaded.

B-5
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Task IT11.3: Implement Software for Merging Subsurfaces.

Proposal Objective: To develop code to merge surface data into one
coherent surface.

Work Accomplished: Designed, but not implemented.

Technical Problems: There may be too little time left on the project to
implement the needed code.

Effect on Project: This Task must be finished to provide a working
system.
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Task lil.4: Implement for Converting to IGES

Original Objective: To develop code to convert database data to IGES
format.
Work Accomplished: IGES specifications were obtained. After -eviewing

the specifications, KMS determined that :t was not
technically feasable to represent VGD su-face data
in IGES format. While we could create a surface
space frame and from there create line segments
representing surface patches, the result would be an
accurate representation of the data acquirec by VGD.

The IGES standard was set up to provide an
interchange format for line segments contained
within 2-D CAD drawings. As such, standard IGES
lacks primiteves for describing the 3-I) surface
features and information that VGD acquires, i.e.
texture, brightness, 3-D coordinates of a surface area
patch. JPL has created extensions to IGES to
address some of the representation restrictions.
However, staff determined that they did not have
adequate time to pursue this approach.

KMS experienced a similar problem in trying to use
IGES as an interchange media for transfering data
from a 3-D solids modeling package on a Applicon
CAD system to another system. Although the
individual line segments of space frame drawings
could be transferred, there was no way to transfer the
information which tied the drawings into a 3-D
shaded model of the object being designed.

Technical Problems: The initial concept of converting the data :nto IGES
was flawed by not understanding the severe
limitations of the standard IGES format. Moreover,
inadequate hours existed to try and address these
limitations by investigating IGES extensions
because of unanticipated 1990 overhead aind G&A
rate increases.

Effect on Project: Little effect.
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Task IV: Design and Implement Operator Interface

Proposal Objective:

Work Accomplished:

Technical Problems:

Effect on Project:

To design an easy-to-use operator interface for
manipulating surface data.

Design complete.

Because of unanticipated 1990 overhead ind G&A
rate increases at KMS, staff determined that there
would not be adequate time for implementing the
user interface which was designed. As a
workaround, the user will interact with the system
using a command line interface.

While a reduction in operator ease-of-use is not
desirable, the VGD system should be able 10 meet its
technical objectives.
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Task V: Design and Build Stereo-Camera System

Proposal Objective: To design a hand-held, easy-to-use stereo-camera
system.
Work Accomplished: The camera and structured lighting system was built

and is functioning. Data is being acquired with it.

Technical Problems: The unit tends to run hot because the structured
lighting system uses a projection lamp. This
problem might be overcome by replecing the
projection lamp with a laser diode. The camera
itself is heavy and somewhat unwieldy. Although
ultra-light weight cameras were obtained, the weight
is greater than anticipated because of the weight of
the camera mounting rail and the weight of the
structured lighting assembly. The weight of the
structured lighting assembly could also be
significantly reduced using a laser diode as the
illumination source.

Significant Accomplishments: KMS developed a working structured lighting
system.
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Task VI: Procure Hardware

Proposal Objective:

Work Accomplished:

Technical Problems:

Effect on Project:

Obtain hardware for efficient data capture and
manipulation.

All hardware obtained.

The CDA array processor still can not be used when
the VAXstation 3520 is configured to use both
CPUs. If the workstation is configured to use both
CPUs, attempting to access the CDA array processor
will crash the workstation. The problem has been
traced to the driver for the CDA array processor. It
does not support symetric multi-processing
correctly. Repeated attempts were made to get
CDA/Analogic to address this problem, but to date,
CDA has not provided KMS with a driver which
correctly supports the both processors in the
VAXstation 3520.

Our inability to use the CDA array processor with
the workstation as intended has hindered our ability
to perform this contract. The speed at which we can
manipulate data and test concepts just using the
VAXstation is too slow. Because we have been
unable to get CDA to resolve the problem, the time
we spent tracking down the problem and trying to
resolve it was wasted.
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Section C
Quarterly Report #1: December 1989

C-1: Purpose and Scope of This Report

In conversations with NASA on December 4, 1988, we learned of possible applications of great
interest to NASA to which VGD’s technology might be applied. In particular, the three
applications of greatest interest were: (1) autonomous docking between an OMV and a satellite,
(2) ORU replacement by a telerobotic servicer, and (3) assembly and disassembly. These
applications have the common thread that they all will necessarily employ model-based object
recognition and tracking. The team at KMS that is working on this contract has much experience
in this area; two of us have written our Ph.D. dissertations in these areas, and the rest of the team
has done extensive research in these areas, as well as other areas of computer vision. In addition,
we have won previous contracts to perform research in recognition and tracking. Therefore, we
are very qualified to develop such a system. However, as originally proposed, the goal of the
Phase II View Generated Database effort, is to develop a model acquisition system. This
system would allow accurate 3-d models of 3-d scenes, or of individual 3-d objects to be
constructed which is not as readily applicable to NASA’s immediate needs as it might be.

However, in the event that NASA would consider a modification in the VGD statement of work
which would slightly reorient the project’s goals, KMS believes that it would be possible to
redefine the VGD project to make it more readily applicable to NASA’s mission. Consequently,
part of the purpose of this report is to highlight what changes would be necessary to accomplish
such a reorientation, if NASA determined such a change in project objectives was in the best
interest of the government.

In order to clarify the changes required for reorientating VGD, we are providing an overview of
KMS’s approach to model-based object recognition and tracking followed by a synopsis of VGD
as it was originally proposed in Section C-3. Section C-3 will also discuss how KMS could
address NASA'’s applications in object recognition and tracking by slightly modifying the
statement of work while maintaining the existing Phase II budget. Section C-4 provides a
detailed description of KMS’s tracking algorithm.

In addition to the primary purpose of this document, there are two secondary purposes. The first
is to apprise you of KMS'’s software development process. The second is to provide a critical
review of existing work in the areas related to VGD which is a task in the statement of ‘work.

The heart of KMS’s software development process is our software quality assurance juideline,
which is outlined in Section C-5. This guideline insures that the delivered software system is
well documented, easily maintainable, and contains the desired functionality.

Finally, in Section C-6 is a review of critical review of model acquisition systems. However,
since we realize that NASA may have some interest in utilizing VGD’s technology in object
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recognition and tracking applications, we have included a critical review of object recognition
methods as well in Section N,

C-2: Overview of KMS’s Approach to Model-based Object Recognition
and Tracking

KMS has considerable experience in building systems for model-based object recognition,
transformation determination, and tracking. This section provides an overview of our
approach to these problems.

KMS’s approach to model based object recognition consists of three major phases:
(1) Modelling phase: model acquisition and representation,

(2) Lock-in phase: initial model or model sub-part identification and coarse viewing
transformation estimation, and

3) Tracking phase: fine viewing transformation estimation and hypothesis validity
checking.

We have referred to phases phases (2) and (3) in “tracking” terminology as this is more
suggestive of the functions they perform. However, each of these phases is largely isomorphic to
a corresponding phase of the object recognition process. In a model-based tracking scenario, the
lock-in phase refers to the problem of initial identification and view transformation estimation.
Thus, in such a scenario, this phase must "lock-in” on which object (or objects) are present, and
roughly estimate the viewing transformations so that the tracking phase can take over to
accurately determine the viewing transformation, and update, i.e., track it, from frame to frame.
In an object recognition and location scenario, the goal of the lock-in phase, as in the tracking
scenario, is to provide initial hypotheses about the identity, position and orientation of the object
that appear in an image of a scene. Also similarly to the tracking scenario, the position and
orientation of each model hypothesis needs to be determined only roughly, because the function
of the tracking phase is to refine the estimates of the viewing transform. In an object recognition
scenario, the tracking phase would be augmented to perform some additional validity checking
against the image to screen out possible false alarms.

The remainder of this section describes KMS’s approach to these problems.

While phases (2) and (3) differ in some minor respects between a tracking scenario and an object
recognition scenario, phase (1), the modelling phase, are identical in both scenarios. In either
scenario, the modelling phase will be performed off-line, i.e., prior to the recognition phase or
the tracking phase. If it were to be performed on-line, then VGD as it was originally proposed
would be more appropriate. However, in the context of model-based object recognition and
tracking, the modelling phase consists primarily of creating representations of 3-d objects that

C-2
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expedite recognition and tracking. Conventional representations used by geometric modelers in
CAD and CAM applications are unsuitable for vision applications. Thus, a critical part of the
design of VGD is to represent the 3-d objects in a manner that expedites the tasks of recognition
and tracking.

VGD will continue to concentrate on the modelling phase of the overall problem of object
recognition, transform determination, and tracking. However, KMS will add a task to the
existing task statement in our original proposal wherein we will investigate using these models in
an existing object tracking and transform determination system. The remaining parts of this
section are devoted to describing the modifications to each task of the original proposal, as well
as describing the new task.

C-3: Reorienting VGD for Object Recognition and Tracking
Applications

Based on conversations with NASA, we believe that model based object recognition, viewing
transformation determination, and object tracking are of considerable interest to NASA.
Therefore, we are offering to redefine VGD in a way that might be more responsive to NASA's
needs. In particular, we could redirected the model aquisition effort away from its original
emphasis on 3-d surface acquisition, detailed surface photometry measurement, world model
maintenance and toward model aquisition and representation for object recognition,
transformation determination, and tracking.

Therefore, Section C-3.2 provides a brief description of our approach to model acquisition and
representation. This representation is much better suited to model-based 3-d object recognition
and tracking than conventional CAD/CAM representations. Finally, Section C-3.3 provides a
task-by-task description of the redirection that we could make (if directed by the contracting
office) in the original six tasks. To further address NASA's needs, we could also add a task to
incorporate the models created by VGD into existing object tracking software developed at
KMS.

C-3.1: Synopsis of VGD as Originally Proposed

VGD provides the capability to accurately represent any real-world object or scene as a computer
model. Such models include both an accurate spatial/geometric representation of surfaces of the
object or scene, as well as any surface detail present on the object. Applications of such models
are numerous, including acquisition and maintenance of world models for tele-autonomous
systems, generation of accurate 3-d geometric/photometric models for various 3-d vision
systems, and graphical models for realistic rendering of 3-d scenes via computer graphics.

The features and the benefits of VGD, as originally proposed, are listed in Table C-1.
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Table C-1:

Features of Proposed System

Uses a hand-held stereo pair of solid
state cameras.

Uses a hand-held shuttered projection
system that allows structured lighting to
be projected onto a surface.

Uses structured lighting but can be
adapted to using existing lighting.

Provides an innovative sterec matching
algorithm.

Registers different views of an object
using natural and artifictally placed
surface markings.

Provides a heirarchically organized
database for combining subsurfaces of
\an object and for building a world model.

Benefits of VGD to NASA

Allows objects of arbitrary size, and
locatlon to be input into a computer
model.

Allows accurate determination of the
surface of an object even when the
surface has little surface detail.

Does not require a special
environment in imaging the object.

Allows integration of a number of
visual depth cues.

Does not require that the object ta be
placed into a special fig or oriented by
a sophisticated positioning device.

Allows rapid access to both the
geometric and surface detall
description of the object model.

KMS’s View-Generated Database will provide a flexible tool for

creating computer models of existing objects.

C4
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C-3.1.1: Perspective on VGD as Originally Proposed

VGD has many applications. A particularly important one is the capability to provide vision
systems, tele-autonomous systems, with accurate geometric and photometric models of everyday
objects -- objects that were not originally designed with CAD tools. State-state-of-the-art object
recognition and tracking techniques require such models in order to recognize and localize
objects. VGD allows such systems to operate on scenes containing any objects, not just the ones
that have been created using a CAD system, thus circumventing the need to laboriously create
such models. Another important application is the creation and maintenance of world models
for tele-autonomous systems. VGD has the capability to create a 3-d model of any scene using
its visual sensor apparatus. Known objects can be identified and their locations determined.
Further, the 3-d position and structure of unknown surfaces can be determined and stored in the
world model for use in obstacle avoidance and path planning.

C-3.1.2: Functionality of VGD as Originally Proposed

VGD’s design provides
« amobile stereo camera/structured light apparatus from which registered stereo and structured
light images can be acquired,;

+ the capability to take multiple snapshots of a scene or object using the camera apparatus, and
use them to produce a 3-d description of the scene or object. In particular,

- calibration of the stereo cameras and the structured light system,

- accurate determination of interframe transformations, first with manually placed
features and later with existing features,

- to determine coarse surface geometry using images of projected structured light that is
registered with standard intensity stereo images,

- recover detailed surface geometry and surface albedo of portions of the object
corresponding to each view,

- fuse the surfaces into a single world model or object model;

+ an easy interface to existing modeling systems since
- the 3-d model is represented both in planar patch format and surface spline format,
- models may be stored in files adhering to standard 3-d modelling formats;

« aworld-modeling database permitting
- easy and efficient creation and maintenance of a world model,
- searching based on geometric attributes such as surface structure and position,
- searching based on user definable attributes;

+ an easy to use, Macintosh-like operator interface that allows all facets of the system’s
operation to be controlled and monitored in a simple, intuitive manner;

C-5
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C-3.2: Modelling 3-d Objects for Recognition and Tracking

The proper representation of objects is critical to VGD’s success in recognition, location,
and tracking. By using models, VGD can compute the edges, and other features, that
should be visible from a particular viewpoint. The key to achieving ultimate real-time
object recognition and tracking performance Is in accomplishing this task in the most
efficient manner possible. KMS has explored a particularly promising avenue for
acquiring and representing models of objects. This object representation, called the
Basri-Uhliman representation, or BU representation, allows edges and their positions
and arlentations, to be computed extremely quickly. Ultimately, the BU representation
should allow implementation of reai-time object recognition, transformation
determination, and tracking.

Efficiently predicting the visibility, position, and orientation (i.e., the appearance of the edges) of
edges on a smooth object is very difficult. In contrast, efficiently predicting the appearance of
edges on non-smooth objects, i.e., objects possessing many creases (tangent discontinuities), is
far simpler to accomplish. The reason for this is that rotation of an object with a crease will
produce edges that are simply the projection of the new 3-d location of the crease. On the other
hand, given two views of a smooth object, there will be two distinct sets of points on the object’s
surface, one corresponding to each view, that project to edges in each view of the object. Thus,
predicting the appearance of edges in a view of a smooth object is a two step process. First, we
must compute the set of points on the surface of the object that project to edges. This set of 3-d
points on the surface of the object is the called the contour generator. After computing the
contour generator, it must be projected to obtain the actual edge contours. In contrast, predicting
the appearance of edges resulting from creases on a non-smooth object is much simpler. Since
the 3-d positions of the points on the creases are known a priori, all that is necessary is projecting
these crease points to predict the appearance of the edges.

The BU representation allows VGD to quickly predict the appearance of the edges visible from
any viewpoint, even when the object is smooth. The following paragraphs provide an abridged
description of the BU representation, and discuss its merits as an representation for model-base
object recognition, transformation determination, and tracking.

The Basri-Uhliman (BU) Representation of 3-d Objects

The BU representation consists of several submodels, each of which allows accurate prediction
of the appearance of edges over a portion of the viewing sphere. Each submodel, in turn,
consists of a set of 3-d space curves that have the magnitude of the curvature vector associated
with each 3-d point that comprises them. The curvature vector, r,isdefined asr = (rx,ry), where
1, is the radius of curvature of the 3-d surface of the object around the x axis, and, similarly, r, is
radius of curvature around the y axis. It can be shown that the direction of the curvature vector is
perpendicular to the direction of the tangent to the contour [Basri Uhllman 1988]. Thus, r can be
computed from its magnitude, which is stored in the representation, and the tangent direction,
which can be computed from the projection of the 3-d space curves that are also part of the
representation. This allows the surface of the object near the contours to be well approximated by
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the circle of curvature about the axis of rotation. This approximation holds well over a large
region of the viewing sphere. This approximation allows the contour generator to be efficiently
computed using the approximation to the surface [Basri Uhllman 1988]. After computing the
contour generator, it is projected to predict the appearance of the edges from the new viewpoint.

In order to build an model of an object using the BU representation, an edge image taken from a
central view and four edge images taken from auxiliary views are required. The auxiliary views
are obtained by positive and negative rotations about the x and y axes from the central view. The
resulting changes in the positions of the points on corresponding edge contours between the
central view and the auxiliary views allow the 3-d position of the contour generator in the central
view, and the curvature vector r to be calculated at each point of the contour generator. As
mentioned previously, information contained in the magnitude of r plus information contained in
the contour generator contains sufficient to information to reconstruct r, and therefore to
construct the approximation to the surface. Taken together, all of the contour generators in the
central view comprise one submodel in the BU representation. This procedure must be repeated
for each region of the viewing sphere that requires its own submodel.

Figure C-1 shows an example of one submodel of the BU representation applied to a
Volkswagon (VW). The top VW view is the edges that are predicted by the submode! from the
submodel’s central view. The middle two VW'’s are the edges detected in images of real VW's
that have been rotated 15 degrees in either direction from the central view of the submodel. The
lower two VW'’s are the result of superposing the edge images in the middle row with the edges
predicted by the submodel from the new viewpoints. As is evident, the submodel does a good
job of predicting the appearance of the edges.
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Figure C-1: Shown is an example of one submodel of the BU representation
applied to a Volkswagon (VW). The top VW view is the edges that are
predicted by the submodel from the submodel’s central view. The
middle two VW’s are the edges detected in images of real VW’s that
have been rotated 15 degrees in either direction from the central view
of the submodel. The lower two VW's are the result of superposing
the edge images in the middle row with the edges predicted by the
submodel from the new viewpoints. As is evident, the submodel does a
good job of predicting the appearance of the edges.
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The BU representation has several advantages. First, it allows internal edges to be modeled
easily. Second, the method allows models of real objects to be easily built, as well as allowing
easy conversion of objects that have been modeled on a conventional CAD system. Third, if the
edge images used to create the model are taken under realistic lighting conditions, then the edges
will be predicted by the model in a realistic manner. Finally, since the computations involved are
so simple, predicting edges any viewpoint is extremely fast, easily accomplished in real time
with readily available hardware..

C-3.3 Task by Task Description of Modifications to VGD

The changes that we propose to make in the existing tasks of VGD are concentrated in tasks I
and III. The other tasks remain essentially unchanged. In addition, we are adding task VII.
Table 2 summarizes the content of the changes. Sections C-3.3.1 - C-3.3.7 are devoted to
describing the proposed changes in detail.

C-3.3.1 Taskl: Implement Software to Construct
Basri-Uhliman Submodels

The original thrust of this task was to take stereo images of a scene and use them to determine
the 3-d structure of the scene, as well as the surface detail, such as markings and texture, present
on the surfaces. Such surface models certainly contain enough information to be used by vision
systems for object recognition and tracking, but the representation we originally proposed for
VGD, i.e., a 3-d surface patch representation, is not well suited for these endeavors. Thus we
will change this task to the aquisition and construction of Basri-Uhllman submodels. Section C-
3.2 described how the BU representation is ideally suited to 3-d object recognition and tracking
algorithms that use edges as features. Thus, we expect that the capability to acquire and create
BU models will be very useful to NASA.

Section C-3.2.1 described the steps in creating a BU model. For each BU submodel, a total of at
least five views are required. The set must be decomposable into sets of three views possessing
viewing axes that are both coplanar and coincident at a single point. For this reason, we propose
to modify the stereo/structured lighting sensing apparatus that was originally proposed by
removing the structured lighting apparatus and adding a third camera (see Section C-3.3.5
"Design and Build Tricamera Sensor Apparatus). This will allow sets of three images satisfying
the requirements stated above to be acquired simultaneously. The capability to acquire the three
images simultaneously obviates the need to place the object in a jig or holder, making the system
more versatile.
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sk

1

\-

Existing Task Description

Use stereo cameras and structured
light apparatus to recontruct the 3-d
structure and the surface detaii of the
evironment.

Use features of the scene to register
the views taken with the mobile sensor
apparatus.

Possibly alded by the user, fuse the
subsurfaces resulting from Task ! into
single surfaces using the view
registration information from task |I.

Implement an intuitive, easy to use,
Macintosh-style operator interface.
Design and Build the hand-held stereo

camera and structured lighting
apparatus.

Support, maintain, and document VGD

Did not exist in the original proposal

Modified Task Description

The BU representation is comprised
of contours rather than surfaces.
Thus, In this task we will build a
single region representation of the
BU representation from data
acquired from the sensor apparatus
(see changes to Task V).

No changes to this task.

Combine several single view BU
representations, generated In Task |,
into a single multiview
representation covering all possible
viewpoints.

No changes to this task.

Since acquisition of models In the
BU representation requires three
images in a line, design and bulld a
sensor apparatus consisting of three
cameras, one at each end and one
in the middle. No structured light will
be used.

No changes to this task.

Integrate objects in the BU
representation into KMS's existing
model-base, 3-d object tracking
system.

J

Table C-2: A summary of the proposed changes to the tasks in VGD.
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While the sensor apparatus permits the capturing of three registered images, at least
five are needed to create one BU submodel. To accomplish this, the user will simply
rotate the sensor apparatus and capture three more images for a total of six. The
software implemented in Task Il will allow the two trios of images to be registered, i.e.,
the transformations between the two views to be determined. Using the viewpoint
registration information, the curvature information contained in each trio of images can
then be integrated into the standard form of the BU submodel. In essence, recalling the
terminology of Section C-3.2.1, instead of the ideal situation described there where r,
and r, were determined directly due to the special configuration of the central and
auxiliary views, we will obtain r, and r,, where a and b are arbitrary axes in the image
plane. Given knowledge of the precise transformation between the first trio of images
and the second, available from the software developed in Task i, it is a simpie matter to
derive r, and r,, and from this the magnitude of the curvature vector.

C-3.3.2 Taskli: Implement Viewpoint Determination Software

This task remains the same as the original task.

C-3.3.3 Tasklll: Implement Software to Fuse Multiple Basri-Uhiiman
Submodels into a Single, Complete Model.

The viewpoint registration software developed in Task II allows several BU submodels to be
combined into a single model. If enough correctly positioned submodels are used, then the
appearance of edges from any viewpoint can be predicted.

It is relatively simple to fuse the submodels into a single overall model, given the availability of
viewpoint registration data. The most difficult part of this task will be to determine where the
submodels begin to erroneously predict the appearance of edges so that additional submodels
may be added. Further, since we desire the minimal number of submodels providing a specified
fidelity of prediction, we desire to add submodels to the optimal viewpoints in order to avoid
redundancy. These measures will insure that the model provides accurate predictions over the
entire sphere of views, while remaining efficient with storage.

C-3.3.4 TasklV: Implement Operator Interface

This task remains the same as the original task.

C-3.3.5 Task V: Design and Build Tri-camera Sensor Apparatus

As mentioned in Section C-3.3.1, the original stereo camera, structured lighting sensor apparatus
will be changed to have three cameras. Referring to Figure C-2, two of the cameras will be
located as originally proposed. The third will be located in the center of the apparatus, in the
location of the sturctured light projector. This design will allow models of objects to be acquired
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without the need to put them in a special jig or holder. This feature makes VGD much more
versatile.

Figure C-2: Shown is a drawing of the original design of the sensor apparatus.
There are cameras at either end, and a structured light projector at the
midpoint. The revised design would be the same except that the
structured light projector will be replaced by a third camera.

C-3.3.6 Task Vl: Support, Maintain, and Document VGD

This task remains the same as the original task.
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C-3.3.7 Task VII: Integrate BU Models into Existing Model-Based
3-d Object Tracking Software.

KMS has developed a powerful and fast model-based 3-d object tracking system. In this task, KMS will
demonstrate the effectiveness of the BU representation by using such models to track real objects using
our existing tracking software. Further, if NASA can provide us with real objects (or plastic models of
these objects) we will create BU models of these objects, and then demonstrate tracking of these objects
using our tracking software. We expect that the results of these experiments will show that real-time
tracking of 3-d objects is well within the reach of readily available hardware using BU models coupled
with KMS's tracking system.

We have provided a short description of the operation of KMS's tracking system in Section C4.

C-13



VGD Final Report: Section C - VGD Quarterly Report #1: December 1989

C-4: Tracking and Precision Viewing Transform Measurement

During the first video frames of operation the tracking system will locate and lock in on the object or
objects to be tracked. After an object is located, it is tracked, and continues to be tracked, until the object
is lost from the field of view. At the start of each video frame, the tracking algorithm starts with the
current estimate of the object’s view parameters, available from the previous frame.

Using this estimate of the view parameters, the tracking algorithm adjusts the model to minimize
differences between selected features of the object boundary and corresponding features of the model
silhouette to obtain an optimum estimate of the object’s view parameters.

Figures C-3 - C-7 display the step-by-step procedure used by the tracking algorithm to determine the view
parameters of an object that is being tracked during a single frame of data.

Figure C-3: The tracking
algorithm consists of four
steps. In the first step, after
a video frame has been
acquired, boundaries of the
objects in the frame are
located using an edge
detection algorithm mapped
onto a high-performance
array processor.
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Image
boundary

Model
silhouette

Model-derived
features

Figure C-4: In the second
step, features are extracted
from the edge boundaries.
Features consist of pairs of
points on the boundary at
special locations, such as
points of inflection or of high
curvature, which are well
localized and quickly found.
Each feature possesses
attributes that encode the
shape, size, and location of
the local support of the
feature. The image features
are stored in a special
database, designed for fast
retrieval.

Figure C-5: In the third step,
a silhouette is extracted from
the model, where the model
is scaled, positioned and
oriented based on the
current estimate of the
object’s view parameters.
Features are again extracted.
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Figure C-6: In the fourth step,
the differences hetween the
features of the model silhouette
and those of the object
boundaries are computed.
Steps three and four are
repeated as the view
parameters of the model are
iteratively adjusted to
minimize the differences
between the features of the
model silhouette and of the
object boundaries.

Figure C-7: When the
differences are minimized, the
view parameters of the model
provide an optimal estimate of
the object’s view parameters.
This estimate can be used to
directly calculate the 3-space
position and orientation of the
object.
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Figures C-8 and C-9 demonstrate actual results of the algorithm. In Figures 8a-d the tracking algorithm is
lock in on the view parameters of the Space Shuttle starting from a initial, poor estimate of the view par:
The blue contour shown in 8a corresponds to the model silhouette generated from the initial estimate. The
contour (surrounding the Shuttle) corresponds to the boundary of the Shuttle. In Figures C-8(b-d) the al
quickly readjusts the view parameters of the model until the model silhouette corresponds to the object boun.

In Figures C-9(a-d) the tracking algorithm is used to lock in on the view parameters of a partially occlude
Shuttle. Here, due to harsh lighting conditions, the nose cone of the Space Shuttle is missing. The blue cor
9b corresponds to the model silhouette generated from an initial, poor estimate of the view parameters. The
contour again corresponds to the boundary of the object. In Figures C-9(c-d) the tracking algorithm
converges to the cormrect view parameters.
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{a) , {h)

Figure C-8:

(¢) (d)

(a) Given a rough initial estimate of the view parameters of an object, the tracking
aigorithm determines a starting silhouette (blue contour) to be matched to the
object boundary (yellow contour). (b)-(d) The algorithm then quickly locks in on
the true view parameters of the object. Note that In (d), the tracking algorithm
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locates the shuttie boundary so exactly that the

blue and orange contours overlap
and are difficult to see except at the shuttle tail.
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(a) (h)

(c) (d)

Figure C-9: (a) Starting with an image of a partially occiuded object (a), the
tracking algorithm quickly estimates the view parameters of the
object by, (b)-(d), Iteratively matching the model sithouette (blue
contour) to the object boundary (orange contour).
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C-5: KMS Software Quality Assurance Procedures

VGD’s software development Is proceeding through the project phases outlined in the
KMS Software Quality Assurance Standards to ensure the development of high-quality,
well-documented software meeting contractual requirements.

As a step toward insuring the continued quality of KMS software projects, an internal KMS
project resulted in an update to the KMS Software Quality Assurance (QA) procedures. These
procedures provide a formal framework within which high quality and cost-effective software
will be developed at KMS. The KMS Software QA Standards incorporate recognized, industry-
standard QA guidelines as published, for example, by ANSI and IEEE.

KMS felt that it was important to fully implement these updated procedures before proceeding
with detailed development of the View Generated Database. All VGD project activities will be
governed by these procedures. This insures the system which is delivered will adhere to the
detailed "Data Item Descriptions” which are included in the contract,

The development of VGD is proceeding through the project phases illustrated in Figures 10 and
11. The current phase is the project plan. This will be completed when we have agreed upon the
course that VGD is to take. When the plan is complete, a copy will be included in the next
progress report. Based on the Project Plan outline, the Requirements Definition step is will be
initiated. Throughout the VGD project, KMS will communicate detailed specifications and
design decisions to the NASA via the regular quarterly reports, as indicated in the contract. As
addenda to these reports KMS will include relevant documents produced in satisfaction of our
QA procedures.
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and Deliverables
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The Software Development Cycle
and Deliverables (cont)
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C-6: Review of 3D Model Acquisition Techniques

The modeling of three-dimensional objects using multiple camera views is an active research
area in computer vision and is poorly defined at present. The goals of this research have ranged
from rendering realistic environments for simulation, modeling of the world for intelligent robot
navigation, acquiring three dimensional models for object recognition, to supplying model data
for CAD and biomedical applications. Approaches for automatic model acquisition can be
characterized along two basic data fusion methods 1) volume intersection of object silhouettes
projected on the image planes, and 2) fusion of object surface patches reconstructed from
multiple viewpoints. This section describes the various approaches that have been attempted to
achieve these goals, and provide an outline of the respective research efforts classified along
these two lines.

The different research efforts can also be described by the type of input data and the object
representation scheme used in fusing the data. Intensity and range images are the two most
commonly methods for inputting data. Intensity data is typically captured with video cameras,
while range data is collected using either a laser-range camera, structure lighting, or stereopsis.
The sensor used dictates the type of information that can be recovered. Structure lighting yields
sparse but more easily registered range data points than dense range maps. Dense range maps are
constructed slowly with a laser rangefinder that scans an object scan-line by scan-line.
Conversely, intensity data can be instantaneously captured by inexpensive sensors. However,
such images do not yield depth information directly. In addition, techniques such as stereopsis
must be applied to recover range data.

To build up a complete model of an object, the data from different images must be first registered
and then combined. Data has generally been registered using a) a fixture to hold an object at
well-defined view angles, b) a fixed array of lights and cameras to capture the image data, or ¢)
registration points on the surface of an object, where a sufficient number of points are shared
between views to register the views. Multiple views of an object must be combined in order to
capture the shape of a 3D object. Viewpoints can be constrained to 3 (orthogonal) or 13 positions
to yield an efficient fusion algorithm. Fusion of data can be performed efficiently if the objects
to be modeled are of some specific type, eg. polyhedral and cylindrical objects. Similarly, fusion
can be simplified if object silhouettes can be obtained.

Finally, different representations have been used to model objects and for their reconstruction.
The three basic categories have been volumetric, boundary, and wire frame models. Object
models can be further organized by decomposing an object into modeling primitives. For
example, volumetric models have been used that have volume elements, i.e. voxels, as their
basic modelling primitives. Surface patches, on the other hand, are used to construct surfaces in
boundary models. Lastly, coarse models can be derived by composing an object from generic
primitives, such as cylinders and ellipsoids. In order to capture accurate surface detail, the VGD
system will employ boundary models of surface patches for the 3D objects to be modeled.
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C-6.1 Volume Intersection

A very popular data structure used for volume intersection are octrees. Octrees are 3D
counterparts of quadtrees [Sam85], a hierarchical data structure for image regions. An octree is a
true volumetric model representing a 3D object space, defined by a right-handed object
coordinate system, to contain a 2" x 2° x 2" array of volume elements called voxels. A voxel, the
3D equivalent of a pixel (picture element), is assumed to contain a homogeneous volume of
material and can be either occupied or vacant. It also defines the resolution of the modeling
system. The usual shape of a voxel is a cube although a rectangular parallelepiped could be used
in a more general system.

The volume of the array of voxels is called a 3D voxel universe and it is aligned with the object
coordinate system. It is assumed that all objects of interest are within this universe and remain
there during all operations. The space outside the universe is assumed to be void of all objects.
An octree is an 8-ary tree structure generated by a recursive subdivision of the modeling universe
into octants until homogeneous blocks of voxels are reached. If an octant does not consist
entirely of the same type of voxels, then it is further subdivided until homogeneous cubes,
possibly single voxels, are obtained. The root of an octree is at level 0 and the voxels are at level
n.

The generation of octree models of 3D objects consists of three steps. The first step generates
conic octree volumes with the silhouettes of objects projecting from the image plane into the
octree universe. The second step combines a sequence of such conic volumes into a model of the
objects using simple volume intersection. The last step enhances an octree model by labeling
individual objects, adding surface-normal vectors, and mapping intensity textures and other
intrinsic properties on the surfaces of these objects.

After extracting the contour information and constructing the view cones, the volume
intersection step can be done either in 3-space, the octree universe, or in the individual image
planes. Other variations include the permitted number and flexibility of viewpoints during
model construction. Restricting the possible viewpoints decreases the flexibility and resolution
of the construction process but enables one to derive simple and fast algorithms for handling
(simple) common cases. A variety of data structures for encoding an octree have also been
derived for specific performance advantages in processing speed and storage overhead. These
differences and their corresponding systems are highlighted below.

C-6.2.1 Review of Volume Intersection Systems

[Pot87] does the volume intersection by back-projecting the octree universe into the image plane.
The silhouette of a perspective projection of a cube into an image plane depends on the relative
position of the center of projection of the image and the coordinates of the six faces of the cube.
The faces partition the 3D space of the cube into 27 half-spaces: 26 outside and 1 inside. The
index number of a partition that contains the center of projection, relative to the current octree
node, is used to find, in a lookup table, the number of silhouette vertices and their coordinates.
The coordinates of the cube vertex are projected into an image plane using 12 lookup tables for
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the object-to-image space transformations. The polygonal silhouettes of the objects, defined by
the vertex coordinates, are then approximated by their bounding rectangles encoded as quadtrees.
Each polygon is finally raster-scan converted for volume intersection, ie. the pixels inside the
polygon are determined in scan line order and are individually compared with the contents of the
(binary) image.

This is one of the more flexible octree schemes but the overhead in arbitrary back-projection of
the cube and the individual raster-scan conversions is high. Moreover, it requires good camera
calibration and viewpoint registration techniques to compute accurate object-to-image space
transformation for each image.

Instead of performing the costly perspective backprojection, view cones can be projected into the
octree universe and intersected directly in 3-space. [Nob88a,Nob88b] constructs polyhedral view
cones for each image and projects them into the cube for volume intersection. If a view cone is
not convex, it is defined as the union of partitioning convex cones. The cones are then used to
check and classify the eight subregions of the parent cube as inside, intersecting and outside each
convex cone. Cone unification rules are next used to do the same classification for the eight
subregions with respect to each non-convex cone. Lastly, cone intersection rules are used to
integrate the information on the subregions from the multiple view cones into the common
region. A DF (Depth-First) representation [Kaw80] for linear encoding of the initial eight
subregions is generated and recursively applied during model construction.

This octree building algorithm does not build a complete octree for each cone, but instead builds
only a part of the octree within the common region. It is thus able to process an arbitrarily
selected region in 3D space independent of all other region. The procedure is fast when
restricted to polygonal silhouettes. More complex contours can first be approximated by linear
segments but at the cost of processing a larger number of convex cones and introducing
additional digitization inaccuracies. Accurate viewpoint positions are needed for the projections
into the cube.

The above approaches are flexible but computationally expensive. An alternative is in restricting
the possible viewpoints to yield simple and fast algorithms for handling specific cases.
[Chi86a,Chi86b,Chi89] constructs the volume/surface octree from silhouettes obtained at three
orthogonal views. Each occluding contour, encoded into the "principal” quadtree of the
associated silhouette, is first fitted with a tension-spline [Sch66] to allow better approximations
of the contour normals and hence more accurate surface information. With scaled orthographic
projection along the viewing directions, each of the three “principal” quadtree sweeps out an
oblique cylinder into the cube. Since sub-cylinders inside this volume may be identical, its exact
octree can be replaced with a pseudo-octree that contains no identical subtrees. These orthogonal
pseudo-octree are then intersected using simple tree traversal techniques to obtain the resultant
model octree [Jac80].

This approach may be useful for simple objects that are symmetric along its three principle axes.
The major disadvantage, on the other hand, is the inability to guarrantee that all significant
features will be captured by the constructed model.
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[Ahu89] considers a less restrictive case in using silhouette images obtained from any subset of
13 orthographic viewing directions. By restricting to these 3 "face" views, "6 "edge” views and 4
"comer"” views, a simple relationship between pixels in the image and the octant labels in the
octree is derived. The detection of intersections between the octree and the objects is thus
replaced by a simple table lookup operation between a pair of views.

This approach provides more accurate information with the higher degree of reconstruction
accurarcy but it still has problems. Discontinuities cannot be modelled, as evidenced by the
approximation of object edges by rectangular steps. The proposed set of 13 viewpoints is not
sufficient to build accurate models. The number of viewing samples needed for building an
accurate model is arbitrarily large. The number of viewpoints necessary for reconstruction to
within a desired accuracy depends on the viewing direction and the target object.

[Car85] proposes a solution for modelling discontinuities with the polytree model. It attempts to
include more surface information with three extra classes of voxel structure: vertex cell, edge cell
and surface cell. The result shows only negligible improvement. A forerunner of the octree is
the "volume-segment" representation proposed by [Mar83]. It borrows scan-line techniques
from computer graphics to construct a 3D object model from the bounding volumes carved out
by the occluding contours. A wire frame with planar polygonal facets is then derived from the
volume segments. This approach is slow, inaccurate and suffers from the usual problems
associated with silhouettes. [Cap87] extends it to handle real images of parts and compares the
constructed models with renderings of the original CAD designs.

Other less attractive volume intersection techniques have been proposed. [Che88] constructs a
3D model from a set of 3-view (orthogonal) type line drawings. Objects are restricted to
polyhedral, cylindrical and composites of the two that are not rotationally symmetric objects.
The object must be decomposable into subparts for individual reconstruction and then merged to
form a Constructive Solid Geometric (CSG) [Man88] representation of the object. [Ide86] has
an even more restricted system that reconstructs models of only polyhedral objects from a set of
3-view type drawings. [Sha86] uses simulated 2.5D sketches containing only depth information
for their model construction but their volumetric representation and algorithms show no
advantages over octrees. Similarly [Jiy86] describes an iterative 3D algebraic reconstruction
technique with results for two synthetic test models under a variety of projections. The technique
is, however, primitive compared to octrees.

C-6.2.2 Disadvantages of Octrees and Volume Intersection

Octrees are an elegant data structure which enables a simple implementation of volume
intersection for model construction. This advantage is, unfortunately, offsetted by numerous
problems.

One difficulty is that octrees can only provide coarse models of 3D objects. Astronomical
storage and processing overhead are required to capture surface details accurately. Furthermore,
the models are unstable and not invariant to rotation and translation. Thus, completely different
octrees have to be constructed for slight changes in voxel resolution or object position.

C-27



VGD Final Report: Section C - VGD Quarterly Report #1: December 1989

A second problem with volume intersection, in general, stems from the dependence on silhouette
information. First, using silhouettes requires reliable contour extraction and smoothing
techniques. Second, silhouettes do not generally capture surface concavities and object self-
occlusion effectively. Third, digitization effects during volume intersection often result in false
boundaries in the final model.

There are possible remedies to some of these problems. For example, fine details can be
generated with surface interpolation over the voxels with more (post)processing. The accuracy
of this process depends, however, on the initial octree approximation. An alternative would be to
use long sequences of frames to refine an octree. This, however, requires that the best views be
selected, a difficult problem for unknown objects. Typically, arbitrary decisions are made on the
trade-off between accuracy and computation, and the trade-off between coarse and fine
resolution.

Not surprisingly, all experimentation with octrees to date has only been done with synthetic data.

C-6.3 Surface Patch Fusion

In general, surfaces can be expressed in an implicit or explicit form [Bol89]. An explicit form of
a surface is the graph of a function of two variables. Let f: UCR" 5 R. The graph of f is
defined to be the subset of R™*! consisting of the points (x,,...,x,, f(x,,...,x,)) for (x,,...x.) € U,
where U is an open subset of R". The implicit form of a surface in R? space is expressed as a set
function f : R* 3 R | f(x,y,z) = constant, where (x,y,z) are Cartesian coordinates of the surface
points. The explicit form is a special case of the implicit equation and is sometimes referred to
as a Monge patch. Another useful representation of a surface is the parameterized form. A
parameterized n-surface in R™* (k>0) is a smooth map ¢ : U 5 R where U is a connected open
set in R", such that 94, is non-singular (has rank n) for each p € U (which is called the regularity
condition). A parameterized n-surface in R" is simply a regular smooth map from one open set U
in R" onto another.

These surface patches are integrated together in an adjacency graph for the final representation
of a 3D object. An adjacency graph is basically a bidirectional graph with each node
representing a region and the links between nodes the region connectivity relationships. Such a
graph is not, however, restricted to describing surfaces but can directly incorporate information
and relations on edges, vertices (corners) or even generic primitives — all of which are derived
from surface patches. Compared with volume intersection, the approach based on surface
patches yields surface models of higher accuracy and detail in adition to allowing incorporation
of surface reflectance properties during model reconstruction.

The standard model construction process has four major steps. The first step of segmenting the
image into coherent regions can be driven initially by edge detection or region growing
[Bal82,Hor86]. In the former method, the areas bounded by the extracted edge points are
connected and tested for coherence as segmented regions. In the latter method, image pixels are
grouped together on the basis of region coherence using intrinsic surface properties derived from
differential geometry [Bes86]. In the second step, the surface patches derived using a least-
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squares surface fit are either labelled with an unique symbol, or described in terms of parametric
equations. The patches may be recursively combined to form larger entities as long as some
coherence predicate is satisfied. The third step relates the various surface primitives in an
adjacency graph. Information on the different properties of a surface, such as reflectance and
texture, may also be included at each node. Lastly, integration of multiple views is done via the
transformation of the graph constructed from a new view to the global coordinate system, the
matching of corresponding nodes in the two view graphs, and the modification and/or insertion
of surface primitives to refine the relational object description.

C-6.3.1 Review of Surface Patch Fusion Systems

Few past systems that follow the above general strategy based on surface patches meet with
complete success. Although [Und75] may have proposed the first system that leams models of
objects from multiple views, only results for a synthetic image of a single convex polyhedral
object are demonstrated. To simplify the leaming process, objects are restricted to be planar and
convex and useful viewpoints that are known in advance. [Dan82] constructs a model from four
image views for a single object. Partial results for nine sets of synthetic data are produced by an
incomplete system. [Osh79,0sh83] consider multiple 3D objects in a single range image.
Region growing at multiple, successively more abstract resolutions is used to generate an
incomplete relational model.

[Asa87] segments the input images into spherical, cylindrical, or planar surfaces using shading
analysis. A synthetic image of a single object consisting of cylindrical and planar Lambertian
surface with constant albedo is projected orthographically. [Dou81] uses depth cues and object
models to construct a representation of outdoor scenes. After coarse segmentation of the input
image, a highly abstract semantic net relating the regions and object models is built for the
environment. [Xie86a,Xie86b] outlines an expert system that constructs a relational model of a
scene using artificial 2.5D sketches. No result/output is shown.

After extracting edges and lines from intensity images taken at different vantage points,
[Sha77,Sha84] constructs an object model by using the concept of vertex cycles to match
junctions and line segments between images. This approach stems from the various early works
of Clowes, Falk, Guzman, Huffman and Waltz [Bar81). {Yam88] considers only objects
composed of hinges, slides and solids. The modeler leams the number of these features and the
relationships between lines and vertices in image. Results are shown for a pair of compasses,
essentially a 2D object, lying on an uncluttered tabletop. [Bak77] describes a scheme used in
building models of 3D objects through binocular and motion parallax analyses. Curvature
irregularities in the the region boundaries are then correlated to construct the 3D object model.
[Yac75] analyzes images of objects taken from a nearly vertical direction by a TV camera. After
simple thresholding and contour tracing of the object outline, the object model is constructed as a
list of propeties.

[Vem86,Vem87] scans objects resting on a base plane with a laser. The range image is
segmented into regions that are a collection of surface patches homogeneous in certain intrinsic
surface properties. A straight line on the plane is captured in intensity images. It is used as a
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calibration mark for calculating interframe transfrormations. Simple averaging is then used to
merge two overlapping views. [Lau87] constructs simple and incomplete relational models of
(convex or non-convex) polyhedral objects. Jump boundaries are extracted from a 3D range
image by gradient-based edge detection. The edge points are used to generate occluding and
interior contours which segment the object from the image background and into coherent regions.
The hemispheric histogram, a specialization of the Extended Gaussian Image, is used to extract
surface orientation information in detecting corresponding regions in an image of multiple
objects. Regions, however, can not contain holes and undersampling may occur with increased
obliqueness of a facet.

[Her84a,Her84b,Her86] incrementally constructs a 3D model of complex scenes from multiple
images. Stereo and monocular analyses are performed for image data collected at different
viewpoints. Linear structures representing building boundaries are extracted from the images
and combined with hypothesized new vertices, edges and faces, using task-specific knowledge
on block-shaped objects in an urban scene. The edges and vertices from such analyses are then
used to construct the 3D wire frames. The MOSAIC systems handles very complex scenes but in
order to achieve success, a lot of assumptions and constraints have to be used: task-specific
knowledge on urban scenery, trihedral polyhedra scene primitives, and limited linear 3D scene
features of edges and comners. Due to the task complexity, the matching of junctions in the scene
is slow and the scene interpretation is incomplete. Surface detail is provided as simulation by
registering image regions with object surfaces.

[Ste86,Con86,Con87] constructs 3D models of polyhedra objects. The objects are placed on a
turntable and scanned by a laser stripe. Wire frames are built from connected chains of curvature
and step edges approximated by straight line segments. They are fleshed and adjusted before
obtaining a least-mean planar fit of the surfaces bounded by viewplane cycles (closed set of
edges and vertices). A refined model is produced by intersecting the view polyhedra from
multiple views using a boolean intersection algorithm implemented in the GEQ-CALC systemn
[Bar86]. Surfaces are rendered with a Lambertian scattering model. This system is restricted by
the need of placing the polyhedral objects on a turntable. No surface detail such ag texture is
modeled by the wire frame representation.

Instead of just surface patches, [Fer85,Fer88] take the surface patch representation a step further.
A 3D object model from multiple views is derived in terms of volumetric primitives such as
ellipsoids and cylinders. This is done by taking the intrinsic surface feature points, derived on
the basis of surface principle curvatures, and grouping them together to form extremal and
parabolic contours for parsing a surface into patches. 3D surface point correspondences for
multiple views is done by normalized cross-correlation of the feature fields in the surface graphs.
In matching candidate feature neighborhoods between views, the interframe transformations are
recovered to construct a composite surface graph for the object. This composite surface graph,
realized as a set of dynamically intrinsic images (DII), is used in the geometric inference process
to identify the volumetric primitive associated with a patch (or set of patches) and to obtain the
primitive’s parameters. Mulitple primitive instantiations for the same subset of image data is
resolved via shape similarity functions. Results are presented for a symmetric synthetic image
and a range image of a statuette. The final models based on inferred volumetric primitives are
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coarse and imprecise. Not only very little surface detajl is captured, the modeling accuracy of
the selected set of primitives is not obvious.

[Hu89] recovers 3D surface points for a scene containing multiple objects using structure
lighting with a uniform grid. Either a striped image or a gray-scale image can be taken by
merely switching the lights of the projector and the global coordinate system is fixed on the
worktable. A calibration procedure computes the tranformation matrices M. (worktable-camera)
and M, (projector-worktable) for computing the position of a surface point. After extracting the
network of light stripes, geometric and topological constraints are used to hypothesize and test
matches for solving the line labelling problem. The geometric and topological constraints are
based on the uniqueness constraint (C,) and the continuity constraint (G,) of [Mar76]. Based on
using these two sets of constraints for disambiguating surface solutions, [Hu89] presented five
algorithms for 2D network extraction, single 3D point solution, single 3D network solution,
network boundary extraction, and scene solutions. This approach is guided by three basic
assumptions. First, objects in the scene are solid, static and opaque. Second, object surfaces are
smooth and are of low order in the sense that the spatial frequency of surface undulation is less
than the stripe frequency. Third, surfaces are much larger than stripe spacing so that a surface
patch is covered by a multistriped network.

[LeMB85]’s approach is based on the observation that the type of range data to be collected will
differ with regard to sampling frequencies (in space and time) and resolution of range texture. A
grid of horizontal and vertical lines including several dots is projected onto the scene. The dots
are used as landmarks for initiating the line labelling process and "covers" the entire image. The
camera and projector are separated by a vertical baseline so that range information is apparent in
the distortions and discontinuities of the horizontal lines. The vertical lines are used to guide the
extraction of the horizontal lines and to normalize the albedo variations. Grids can be designed
with pattems of different thickness to be used for a multi-resolution range sensor. Associated
with the finite thickness of the lines is an inherent "smoothing” of range texture. Higher
frequency of range discontinuities cause the thinner projected lines to break up, whereas the
thicker lines display very little distortion. A simple formula relates this smoothing of range
texture to the thickness of the grid lines. In particular, the finite thickness of the lines imposes a
maximum on the detectable range. After filtering the image with the Laplacian of Gaussian
operator, a shrink and expand procedure is applied to extract the vertical lines. Row and column
accumulators are used to locate the vertical bars and the grid intersections in the image. The
albedos in the orginal gray level image is normalized by computing a local threshold based on a
square neighborhood at each point. Labelling of the intersections is initiated with the location of
the dots and completed by combining and interpolating among the initial labels. Disparity values
are then finally assigned to the extracted and labelled intersections.

[Pot79] uses a pair of images containing a single object for such model construction. The object
is pattem-illuminated by photogrammetric techniques and imaged under perspective projection
inside a calibration fixture. Calibration marks on the fixture are extracted using the Laplacian
operator and the Hough transform [Bal82]. The marks are used in computing the camera
transformation matrix. The grid patterns are extracted in the form of straight lines and cubic
curves using scan-line-to-vector conversion. Points and curves are then matched between images
on the basis of the topology of the projected grid network to generate the 3D model. An inverse
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mapping is used to reconstruct the matched cycle in 3D space using a least square-error
technique. Nodes adjacent to this initial cycle are reconstructed and iteratively propagated in all
directions using heuristic search methods. This process reaches quiescence when all the nodes
are processed. This approach suffers from several problems. Surfaces are required to be
photographed within a camera calibration fixture. The ten calibration marks have to be visible
among the set of images. The surfaces cannot be transparent, highly reflective or totally black.
Results are presented on the reconstruction of isolated surfaces using just polygonal shape
approximations that contain no surface detail.

[Ver87] describes a method of obtaining 3D replica made of polyurethane foam from an arbitrary
part of the human skin. An integrated system consisting of a photogrammetric stereo restitution
system and a CAD system integrated with a NC 3D milling machine is used in constructing the
replica. The depth values for a stereopicture of the frontal view of a human face is manually
digitized. The surface is then fitted with B-spline functions which are used by the CAD system
for the replica. [Duf88] scans the facial dimensions of a live human subject with a line of light
from a low power laser under 5 seconds. The facial boundary is obtained by thresholding the
range image and fitted with the longest possible line segments. Selected points in the depth map
form vertices for the polygonal model of the face. Polygons are formed in such a way that where
the surface details are complex, the polygons are small and where the surface is featureless, large
polygons are generated. After hidden surface removal, texture mapping using Phon g shading
[(Rog85] incorporates surface details onto the model facets.

[Sat86a] uses passive stereo techniques to measure the shape of statues on the Easter Islands
from images taken at multiple viewpoints. For the solving the correspondence problem, small
mark seals are stck on the statutes during the day and structured light patterns are projected onto
the statutes during the night. Partial sterreo mathcing is done by dynamic programming and the
epipolar line search. The correspondence search is completed with manual pointing by a human
operator to construct the final range map. Results for images at a single viewpoint are
demonstrated. [Sat87] obtains range data using the Liquid Crystal Range Finder (LCRF) based
on a nematic liquid crystal mask [Sat86b] and Gray coding [(Ino84]. The 3D model of an object
on a turnatable is then constructed from a set of such range images taken at multiple view. The
global coordinates is calibrated with respect to the floor (z-plane) and the rotation angle is
calibrated against a reference cube. The wraparound 3D data is derived from horizontally sliced
contours. Experimental resutlts is shown for one statuette.

C-6.3.2 Advantages of Surface Patch Fusion

Compared with volume intersection, the surface patch fusion approach yields surface models of
higher accuracy and detail. It allows direct incorporation of surface reflectance properties during
model reconstruction. It minimizes necessary storage and processing overheads. And last, nut
not least, the parametric form for representing surface patches is invariant to motion.

Currently, robust techniques exist for calibrating cameras, calculating interframe transformations,
recovering range information via stereopsis and triangulation, computing and reconstructing 3D
surface solutions, and fusing 3D surface data from multipe views. The best work in this area are
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exemplified by the systems of [Pot79,Hu89,Sat86a] as described above. Although they are
incomplete and experimental in nature, they show considerable promise. Undoubtedly, a
automatic model acquisition system can be realized in the near future.
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Section D
Quarterly Report #2: March 1990

D-1. Introduction

In light of our clearer understanding of NASA'’s needs, we will proceed with the development of
VGD as originally proposed. The work that was done this quarter, which was necessarily limited
due to uncertainty with regard to the approach that KMS was to take. However, this uncertainty
has now been resolved, and we understand that the originally proposed approach is most
appropriate. Therefore, KMS will proceed full speed with the development of VGD according to
the original proposal.

Since the last quarterly report, the hardware required for the project has been ordered. In
addition, parts of the initial, tentative software requirements specification (SRS) for VGD has
been completed. We will periodically include parts of the SRS as it becomes more complete for
review by NASA. The remainder of this report includes the part of the SRS that has been
completed for VGD thus far. This section of the SRS is a general description of VGD from the
users’ perspective. Shortly, KMS will complete the functional description portion of VGD’s
SRS. This section describes the functions that must be implemented in order to achieve the
behavior described in the general description that has been included in this report.
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D-2. VGD SRS: General Description of the VGD System
D-2.1: Perspective on VGD

VGD has many applications. A particularly important one is the capability to provide vision
systems, such as that proposed in STORS, and tele-autonomous systems, with accurate geometric
and photometric models of everyday objects -- objects that were not originally designed with
CAD tools. State-state-of-the-art object recognition and tracking techniques require such models
in order to recognize and localize objects. VGD allows such systems to operate on scenes
containing any objects, not just the ones that have been created using a CAD system, thus
circumventing the need to laboriously create such models.

D-2.2: Functionality of the VGD System

VGD design provides

A hand-held stereo camera/structured light apparatus from which registered stereo and
structured light images can be acquired;

the capability to take multiple snapshots of a scene or object using the camera apparatus,
and use them to produce a 3-d description of the scene or object. In particular,
- calibration of the stereo cameras and the structured light system,
- accurate determination of interframe transformations, first with manually placed
features and later with existing features,
- to determine coarse surface geometry using images of projected structured light
that is registered with standard intensity stereo images,
- recover detailed surface geometry and surface albedo of portions of the object
corresponding to each view,
- fuse the surfaces into a single world model or object model,;

an easy interface to existing modeling systems since
- the 3-d model is represented both in planar patch format and surface spline
format,
- models may be stored in files adhering to standard 3-d modelling formats;

* aworld-modeling database permitting
- easy and efficient creation and maintainance of a world model,
- searching based on geometric attributes such as surface structure and position,
- searching based on user definable attributes;

an easy to use, Macintosh-like operator interface that allows all facets of the
system’s operation to be controlled and monitored in a simple, intuitive manner;
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D-2.3: Using VGD

The complex operations being performed by VGD can be as visible or invisible as the user
desires. Most operations are accomplished using sequences of menu choices, or mouse clicks
within images or graphical representations displayed on the screen.

There are several phases, or modes of operation in VGD. Some need only be used infrequently,
such as the calibration phase. Others will be used extensively, such as the scene/object
reconstruction phase. In particular, the primary user modes in VGD include

frame acquisition

calibration:
-  stereo camera calibration,
- structured light projector calibration;

+ frame registration;
surface reconstruction;
+ surface fusion;

world model/database manipulation;

D-2.3.1: Frame Acquisition

Two types of frames can be acquired: a stereo pair of images, with and without structured
lighting. The frames menu allows these types of frames to be acquired. The frames menu has
four entries:

+  existing light stereo: marks this option for the next acquire command;

* structured light stereo: marks this option for the next acquire command;
frame parameters: sets the default frame parameters, such as the dimensions and
position of the frame within the camera’s field of view:

- acquire frame: acquires the frame, using the settings of the previous three selections
(using defaults if not set), and stores them in viewable buffers of the user’s
specification.

Since acquiring a frame of structured light stereo uses all of VGD’s image acquisition
capabilities, this case will be described first. Acquiring a frame of structured light requires that
(ideally) two simultaneous, registered stereo pairs be acquired: one with existing light and the
other with existing light plus structured light. The structured light pattern can then be extracted
simply by differencing the images. Since VGD’s camera apparatus cannot simultaneously
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acquire two such frames, the effect is obtained by acquiring two images in rapid succession,
1/60th of a second apart and differencing these images. VGD will direct this to occur, and save
the result to a buffer if the structured light stereo option is chosen, followed by the acquire
frame directive. If the existing light stereo option is chosen, then VGD will capture only a
stereo pair with existing light, and save it to a buffer. If both are chosen (default), all of the
above are saved in a viewable buffer.

The frame parameters option allows the user to set what size images will be aquired, as well as
what portion of the camera’s field of view will be used.

When both existing light stereo and structured light stereo pairs are captured, then VGD
automatically associates these pairs as being taken from the same viewpoint.

D-2.3.2: Calibration

Calibration appears as a main menu having two entries:

Stereo: takes an existing light stereo pair of a calibration card, prompts the user for
correspondence between the patterns on the card in each stereo pair, and then generates
a calibrated camera model.

Structured light: Takes a structured light stereo pair of a flat surface and uses this to
generate a calibrated model of the structured lighting acquisition process.

Choosing stereo allows the user to calibrate VGD’s stereo camera apparatus. Calibration of a
stereo camera consists of creating a camera model for each of the two cameras, and a precise
determination of the relative position and orientation of the two cameras.

After choosing stereo from the calibration menu, the user is prompted to acquire a frame of
existing light stereo. The frame must be taken of a calibration card. The calibration card
consists of several ruled lines on a rigid, flat card. The card is placed in both cameras’ fields of
view. VGD graphically displays this frame, and directs the user to select as many corresponding
pattemn elements as possible (sets of intersecting lines are currently being used) between the two
images. The user does this simply by clicking on corresponding pattern elements. After the user
notifies VGD that he has made all possible correspondences have been made, VGD creates a
calibrated model of the stereo cameras.

Choosing structured light allows the user to calibrate VGD'’s structured light projection
apparatus. When this option is chosen, VGD directs the user to take a structured light stereo pair
frame of a flat surface. VGD then directs the user to designate the areas of each image that
consist of the calibration surface. This does not need to be done exactly; simply using the mouse
to circle a valid area in each image is sufficient. VGD uses the valid regions to create a
calibrated model of the structured light projector.

D-2.3.3: View Registration
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In order for VGD to be able to fuse portions of the scene surfaces that it has reconstructed, it
must register the frames taken of the scene. Registration consists of finding a transformation
between the views. Ultimately, VGD will register views automatically, and will only require
user assistance if problems are encountered. Before reaching this state, VGD will require users
to select corresponding image features from each view.

In the initial version of VGD, manually placed features (in the form of removable, stick-on
marks) will be used. Later, existing features will be used. The user will be presented groups of
existing-light stereo pairs, and be asked to click on corresponding features in each view. VGD
will present its hypothesis about which features correspond, both in the stereo pairs and in the
larger scope of the set of views. Thus, the user interacts mainly to correct VGD'’s errors, if any.

In order to register a set of views, the user first selects the frames that he wishes to register.
After these frames have been selected, VGD displays them in reduced, icon-like form (64x64) so
that the user can quickly examine a large number of frames at once. The user may arrange the
iconized frames on the screen in any manner he desires. VGD provides a set of zoom/reduce
functions that allow the frames to be enlarged when accuracy is required, and reduced to
conserve space otherwise. The user may then designate correspondences between features in
distinct frames, or between the images in a single frame. VGD will protect the user from
accidentally putting features into correspondence that are not visible from both images of a stereo
pair. VGD allows the user to display groups of designated corresponding features by highlighing
them in color. Further, VGD allows the correspondences to be edited in the case errors were
made.

After the user is satisfied with the accuracy of the correspondences between features, VGD
registers the views by determining the 3-d transformation between the world coordinate system
and the frame coordinate systems. After the 3-d transformations have been computed, VGD
associates the transformation with each frame for possible later use.

D-2.3.4: Surface Reconstruction

Reconstruction of a surface requires that the user has already taken a set of views of a
scene/object and registered the views. It also requires both an existing light stereo pair and a
structured light stereo pair of each view.

Surface reconstruction is initiated by choosing the Reconstruct surface item under the Build
menu. When this item is selected, VGD first asks the user for a set of frames to use as data. For
each frame of the selected set, VGD reconstructs those portions of the 3-d surface structure and
photometry of the scene that can be reliably computed.

D-2.3.5: World model manipulation

Once surfaces have been reconstructed from frames, they become part of a world model
database that allows operations to be performed on the component surfaces. In the absence of
additional information, VGD adds a surface to its currently existing catalog of the surfaces in the
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world model. In many cases, however, VGD is able to determine likely points of segmentation
between objects, and also is able to determine which portions of objects should be fused into a
single, larger surface, which may then be grouped with other surfaces into objects in the world
model. VGD provides editing and viewing capability of surfaces and objects stored in the world
model database, so that if VGD makes any errors, they can be corrected by the user.

D-2.3.5.1: Surface Fusion

Once a set of surfaces have been reconstructed, they may be fused into a smaller number of other
3-d entities. This is done by choosing the Fuse surfaces option under the Build menu.

D-2.4: Constraints on VGD

VGD is limited by the available processing power as well as the degree of user input that it
requires. VGD achieves its high level of functionality by using advanced, computationally
intensive algorithms, particularly during the surface reconstruction and fusion phases of the
system. This constraint can only be relaxed by running the algorithm on a more powerful
machine. As for the limitations imposed by user assistance, VGD will require less user
assistance as it matures, approaching full automation.
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Section E
Quarterly Report #3: June 1990

E-1. Summary of Progress

The surface reconstruction phase of VGD is progressing rapidly now due to the discovery of a
new approach to surface acquisition which also holds a great deal of promise as a general
purpose range camera. This technique is based on projection of phase-shifted, sinusoidal
structured light patterns onto the scene. As described in Section 2.1 this allows the geometrical
structure of the surfaces in the scene to be separated from photometric properties of the surfaces
in the scene. This permits surfaces to be acquired quickly and easily. The primary en gineering
challenges with this approach have been fabrication of accurately sinusoidal transmission
gratings and accurate calibration of the apparatus. However, these problems are on the verge of
being solved. Section 2.1 contains a description of the theory of the new technique, how KMS is
implementing it, and some preliminary surface data acquired using the technique.

Work on surface merging is also well underway. The central problem here is accurate
determination of the viewpoint. We have nearly completed implementation of the software for
accomplishing this. The software for the other aspects of surface merging, such as conversion of
the pixel-based surface format into a format more amenable to manipulation, and such as the
accurate combination of geometric and photometric data from separate surfaces into a single
surface, has been designed. Work is just beginning on the implementation of these phases of the
task.

E-2. Technical Status

E-2.1 Surface Reconstruction

E-2.1.1 Problems with Existing Surface Reconstruction Approaches

KMS has found previous approaches to the problem of surface reconstruction unsuitable to
VGD. We discuss the reasons for this in the following paragraphs.

Passive sensors, i.e., sensors that use only ambient illumination, employ binocular stereo,!:?
trinocular stereo,? epipolar motion stereo*, or axial motion stereo to derive range maps. These
methods are extremely compute intensive, subject to error, and provide only sparse
measurements of range data that must be interpolated later using even more compute intensive
algorithms.$

Active sensors, i.e., sensors that produce their own illumination of the scene, include image laser
radar systems, structured lighting approaches, and fresnel diffraction systems. Image laser radar
systems use time of ﬂight,7'8 amplitude modulation, %10 and phase modulation.
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Time of flight sensors determine range by measuring the travel time of light from the system to
the object and back. The problems with this approach they are useful only for objects at large
distances. The time delays for light travel over short distances are difficult to measure. In
methods using amplitude and phase modulation the intensity or phase of laser light is modulated
at a fixed frequency, bounced off the target object, detected by a photodiode, and phase-
compared to the original output signal to determine a relative range. If the modulation frequency
is chosen so that the object falls within one cycle of modulation, absolute depth can be
determined. Problems with these approaches are that they are too bulky and power hungry for
space-based robotic applications. For example, the lightest system of this type, built by Odetics,
weighs 33 1bs and uses 42 W of power. In addition, many of these systems use complex
scanning mechanisms that can be easily damaged.

Structured lighting approaches project a known pattern onto an object and interpret depth to the
object by triangulating on the pattern. Patterns include points, lines, grids, circles, crosses,
stripes, binary coded patterns, and random texture!!-2®. The problem with many of these
approaches is that they require solving the correspondence problem, i.e., determining which
projected feature, point, line, cross, etc., corresponds to which image feature. Once this problem
is solved, the range measurements, as in passive methods, are only obtained at sparsely
distributed points, except for the the coded binary pattern methods, which provide denser
information. However, the binary coded patter approaches have difficulty separating the pattemn
from the surface detail of an object.
Projection moiré interferometry?!22 js variation of structured lighting in which a fine grating
pattern is projected onto an object and the pattern is read back through a second grating to
produce moiré fringes. If the setup is properly aligned, the fringes will correspond to contours
generated by the intersection of imaginary planes parallel to the camera system and the object
under study. Single moiré images, however, do not uniquely characterize the surface.

An improved approach to moiré is phase-shifted moiré?* in which the moiré pattem is shifted in
phase by manipulating the projection grating. The result is that the phase of the moiré pattern is
shifted in phase. Combining a set of phase-shifted patterns allows the underlying range data to
be uniquely determined. Problems with phase-shifted moiré are that the grating frequencies are
fixed and, therefore, the sensitivity of range measurements is also fixed. In addition, the return
pattern has a underlying grating pattern superimposed on the moiré pattern which represents a
form of noise that must be filtered.

E-2.1.2 KMS’ Solution for VGD

Our investigation into this problem has led KMS to an ingenious solution. The technique uses a
new type of structured lighting wherein phase shifted cosine patterns are projected using high-
quality sinusoidal slides onto the surfaces of the scene and using a CCD camera to image them.
We call this new technique SUrface Reconstruction by PH Ase-shifted CosinEs (SURPHACE).

In SURPHACE, projecting a known pattern onto a surface allows the range of the points be
triangulated by measuring the distortion of the pattem caused by the geometric properties of the
surface. Unfortunately, the photometric properties of a surface also affect the amount of light
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that is retumed to the camera, and, thereby contribute to the distortion of the projected pattern.
With a single image, it is impossible to separate the affects of geometric and photometric
properties without a great deal of knowledge about the lighting and surface properties.

Using multiple images and a technique borrowed from interferometry, known as phase-shifting,
the distortions in the pattern caused by the geometric properties can be isolated from those
caused by surface photometric properties. Specifically, the slide projects a sinusoidal pattern
with a fixed spatial frequency w,. Referring to Figure E-1, the patter returned to the camera has
the original carrier, wg, modulated by a phase function, ®(x,y). The phase function O(x,y)
measures the distortion of the return pattern due to the geometric properties of the imaged
surface.

PATTERN ’/ coouw”gfo!f:s?mm
AN,

PROJECTION
sLiog

Figure E-1: SURPHACE obtains range by projecting three sinusoidal patterns that have
been phase shifted from each other triangulates on the resulting distorted
phase function to determine the range to the surface.<ps=12

The intensity, Ip(x,y), of the pattern returned to the cameras can be modelled as modulated sinusoid:
RR(x,y) = 1,(x,y) + Ig(x,y) * COS(wWy*x+D(x,y)+9,),

where I,(x,y) represents variations in the intensity due to background, or ambient lighting, and Ig(x,y)

represents the variation in contrast of the cosine pattern due to the photometric properties of the objects

imaged. The term ¢, represents a phase shift that will be introduced into the pattern by moving the slide

in the projector.

We may solve for @ as follows. For each pixel at location (x,y) the return intensity can be represented by
the real component of a phasor I,

Ig = Re(Ig) = Re(l, + Ip * (COS(wp*x+D+9.) + j Sin(wy*x+0+4,)))

(temporarily suppressing the x and y arguments in the notation).
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The phasor Iy can be schematically represented in the complex plane as,

jy

where I, represents an unknown offset to the center of a circle in the complex plane, I, represents an
unknown radius of the circle, and wy*x+0+§, represents an unknown offset angle on the circle.

Since the center of the circle is confined to the real axis, therefore possessing two degrees of freedom,
two measurements, shifted in phase from each other, suffice to determine the circle. A third
measurement, shifted in phase from the previous two, determines the end point of the phasor on the circle.
Since the circle is specified by I, and Iy, and the location of the point on the circle specifies @, three
phase shifted measurements are all that is necessary to determine I., I3 and @. In fact, ® can be
determined by

0%,y = tan” (2 Ini(,y)*sin(@)), (X In(x.y)*cos(8)))

where Ip,(x,y) corresponds to the jth phase-shifted image and j takes on values from 0 to 2, where ¢ =
27j/3. This operation can be performed with a table-lookup operation for an extremely efficient
conversion of the phase-shifted images to phase data.

Because multiples of 21 are lost when the phase is encoded in the cosine functional, &(x.y) is extracted as
raw data with phase values within the range 0 to 2. In this case the raw phase is "unwrapped' from its 0
to 27 range by finding the locations at which artificial jumps, i.e., phase jumps due to the artificial
restriction of the phase to the range 0 to 21, and adding in an offset function that has the jumps of 27 with
the opposite sign resulting in the desired unwrapped, continuous phase function. In practice, noisy data
can cause phase jumps to be lost or to occur in the wrong locations. This problem can be solved trivially
by measuring the range data with two different spatial frequencies and combining the two sets of data,
which will have different phase jump locations, to unwrap the phase data,

Finally, the range data can be recovered easily from the phase data. For example, for the imaging
configuration shown in Figure E-2,'’ the phase function ®(x,y) is inversely related to the range, Z, from
the camera to the imaged surfaces,

Z=(a *X)(®(xy)*p),

where a_ and X, are defined in Figure E-1, and p is the pitch of the grating in centimeters per radian.
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sLM Camera image Plane Figure E-2: For a suitable optical configuration
i the desired range information has a simple
relationship to the phase function measured by

the SURPHACE camera.

Figure E-3: SURPHACE obtains range by projecting three sinusoidal patterns that have
been phase shifted from each other, such as the low frequency, single-cycle
pattern shown in (a), and triangulates on the resulting distorted phase
function to determine the range to the surface, as shown in (b) where the
range has been measured with respect to a plane that is tilted with respect to
the camera’s viewing direction.

E-2.1.3 Design and Fabrication of the SURPHACE Projector

The projector for SURPHACE will consist of a high-intensity light projector with a micrometer-
mounted slide holder that will permit accurate phase shifting. The design for the projector is
nearly complete. Prior to the completion of the projector, KMS has been using a standard slide
projector with reasonable success, although some errors are introduced due to the limited phase-
shift accuracy in the current setup.

We have fabricated the slides by exposing computer-generated images of cosine pattern on an
image recording device. However, due to the nonlinear nature of the transfer function from the
0-255 image pixel value to the slide film’s transmission coefficient, the patterns produced in this
way by recording a perfect computer-generated sinusoid are not perfectly sinusoidal, as seen in
the plot of such a slide’s transmission coefficient, obtained using a microdensitometer, shown in
Figure E-4. We have overcome this problem by (1) compensating for the nonlinearities in the
transfer function to produce more perfectly sinusoidal slides, and (2) extending the analysis
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above to account for the presence of the higher-order harmonics in the exposed pattern. We
measure the strength of the harmonics by producing the FFT of the microdensitomideter data and
determining the relative strength of the peaks in the magnitude of the FFT.
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Figure E-4: The microdensitometer measurement of a slide that was exposed with a computer-
generated sinusoid, shown above, exhibits deviations from true a true sinusoid due
to noanlinearities in the recording camera and the film.

E-2.1.4 Calibration of the SURPHACE Apparatus

The accuracy of the SURPHACE technique depends, in large part, on how well the apparatus has
been calibrated. Calibration consists of three parts (1) linearization of the camera’s transfer
function, (2) modeling of the camera’s imaging geometry to enable correction of any non-ideal
behavior, and (3) determination of the geometrical relationship between the camera and the
projected pattern.

Aside from the assumption that the the light pattern being projected is sinusoidal, another
assumption implicit in the SURPHACE approach is that the camera/digitizer is linear with
respect to the incident light intensity. To the degree that these two assumptions hold, the
SURPHACE method can obtain an accurate raw phase map. Recall that the raw phase map is the
part of the projected sinusoidal function that implicitly contains the range data and is the result of
separating the effect of the varying range to points in the scene from the effects caused by
fluctuation in the reflectance of the surface and the intensity of the reflected light throughout the
scene.

Linearizing the camera/digitizer transfer function can be accomplished by using calibrated
neutral density filters to measure the response of the camera. KMS uses such measurements to
linearize the response of the camera. Our experience in performing this procedure on several
cameras has shown that CCD cameras are quite nonlinear, especially at low intensity levels, and
must be corrected.
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The camera/digitizer deviates from ideal behavior in other ways than being nonlinear. KMS will
model these effects and measure them in calibration procedures so that they can be accounted
for. Issues that have been examined include:

* Cameras often low-pass filter video signals to improve viewability but, in the process,

create pixel ghosting effects in the horizontal direction.

* Distortion of pixel locations by imperfect lenses. The most prominent of these effects
is radial lens distortion.24

* Variations in the sampling frequency and the horizontal retrace digitization startup
timing leads to inaccuracies in the horizontal scale factor and the horizontal positioning
of the image.

* Misalignment of the sensor array with the axis of the lens system, resulting in the
middle pixel not being the true center of the optical system.

KMS is adapting a camera calibration method described in the literature®* to create a calibrated
model of the camera for VGD. KMS estimates that this approach will lead to an improvement in
the accuracy in the SURPHACE approach by at least an order of magnitude.

Thus far, we have examined issues relating to the calibration of the camera and projector
individually. The final calibration is to determine their geometrical relationship as a whole.
Determining geometrical relationship amounts between the camera and the projected light pattern
amounts to determining the transformation from the camera’s coordinate frame to the projector’s
coordinate frame. This problem can be solved if the transformation between the camera and a
plane in the scene is known. Knowledge of this transformation permits us to use a phase map of
this known plane to determine the position of the projector.?’

The position and orientation of the plane is determined by taking images of a known pattern of
lines ruled on a plane and performing a least squares fit between the pairs of 3-d points that
define the pattern and the 3-d plane that passes through the focal point of the camera and the
imaged lines.

E-2.1.5 Surface Data Validity Assessment

While we have found that the vast majority of the data produced by the SURPHACE technique is
valid, some of it of it may be poor or invalid. There are three sources of invalid data: (0
surfaces in the scene that the camera sees that are not illuminated by any light source; (2) very
black regions that absorb so much light that there is not enough variation in the illumination
between phase shifts to accurately determine the raw phase; and (3) specular regions that are so
bright that the camera is saturated and, therefore, do not vary according to the model discussed in
theory, yielding poor range data.

The three sources of invalid data listed in the previous paragraph are all characterized by very
small variations in the pixel values between phase shifts: case one will have no variation, cases
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two and three will have little variation. Therefore, one method for detecting this invalid data is
to simply eliminate pixels that do not have sufficient variation among phase shifts. We believe
that this simple approach will identify 95% or more of the invalid pixels.

E-2.1.6 Optimizing the Yield of Valid Data

While there is nothing we can do to improve the yield of valid range points from regions that
have no illumination, we have the means to improve the yield of valid data from low reflectance
regions and specular regions. Increasing the dynamic range of the camera by taking images at
more than one f-stop is one way to accomplish this. As can be seen in Figure E-3, where the
intensity and SURPHACE range images of a specular coffee cup are shown, the SURPHACE
approach is not affected either by markings or specular points so long as the camera is not
saturated and has the sensitivity to detect variations in the phase. Therefore, KMS is
investigating taking phase-shifted images at more than one f-stop and merging the valid range
pixels. This will maximize the yield of valid low-reflectance pixels, obtained when the camera’s
stop is set the most open, and maximize the yield of valid specular pixels, obtained when the
camera’s stop is the least open.

E-2.2 Viewpoint Determination

One view of an object does not provide sufficient information to produce a complete model of all
surfaces of an objects. Thus, the object’s surface must be captured from several different views,
and the data taken at each view must be merged. To properly merge the data, data at different
views must be registered. Research in this area includes the work of Potmesil”, Dane27, and
Henderson.?®?? In Potmesil’s work, surfaces were registered by "sliding" overlapping portions
of the surfaces onto top of one another and determining an optimal fit. This approach, however,
does not work well since surfaces can match at many different positions. With Dane and
Henderson’s approaches the relation between views must be explicitly defined. To provide
maximum flexibility, VGD allows surface data obtained from any viewpoint to be assimilated
into the overall surface model.

Permitting surface data acquired from any view requires that the relative transformation between
the viewpoints be determined precisely. We accomplish this by using landmark features, i.e.,
features that can be easily identified in the surface data from several viewpoints. We are currently
investigating ways to automatically select and detect the landmarks. Currently, landmarks are
hand-selected.

We describe the location of such landmark features by position vectors that obtained from the
surface data provided by the SURPHACE sensor. If the position of a landmark feature i in
viewpoint one was represented by the vector Pi» and the position of a corresponding feature in a
second viewpoint was represented by vector 1;, then the two positions would be related by a
rotation, R, and translation, t. These are the quantities that must be determined in order to
determine specify the geometrical relationship between viewpoints. Mathematically, the
relationship is
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ri=Rpi+t.

Now, if differences are taken between points P; and p; and the corresponding points r;and r; to
produce difference vectors, P;; and I then,

By representing the rotation operator as a quaternion, a simple solution can be obtained for
determining the rotation between the viewpoints. Specifically in a quaternion representation, the
above relation could be written as,

I; = Qr°P;j*dR*, subjecttoggeqp =1,

where "+" indicates quatemion multiplication, and where the quaternion, qg, and its conjugate,
qr*, contains four variables that specify the axis and angle of rotation.

When more than three points, p;» are used, the problem is overspecified and can be solved with
least squares methods,

min qg' B qg, subject to gg'qg = 1,

where qg now represents a 4x1 matrix of quaternion coefficients and B is a 4x4 matrix with
terms involving the difference vectors, P;; and r;;. This problem is an eigenvalue problem and its
solution is the smallest eigenvalue of the matrix B, normalized to 1. Once the quaternion
rotation, g, is found the rotation matrix R can be determined from qg- In addition, once R is
determined, then t can be found by backsubstitution.

E-2.3 Surface Merging

As described above, in VGD the surfaces of an object captured from a number of views. The
views are selected so that the surfaces, reconstructed from the SURPHACE camera data, overlap.
Because the surfaces are registered, the geometric relationship between surfaces can be
established, thus allowing the surfaces to be correctly positioned with respect to one another.

The geometric surface data captured by the SURPHACE camera is in the form of a range image.
While the range image provides the distance of the captured image from the SURPHACE
camera, it is not an efficient format for storing a geometric representation of an object. To
provide a representation the range data will be approximated by a polyhedral surface. For
example, Boissannat and Faugeras3? have developed an algorithm for the polyhedral
approximation of a surface from range data.

The photometric surface data captured by the SURPHACE camera is in the form of an intensity
image. Because the intensity image represents a projection of the surface detail of the object
onto the SURPHACE camera image plane, to obtain the true surface detail, the intensity image
must be backprojected onto the object surface. Several issues must be addressed in
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backprojecting. Since the surface is approximated by a polyhedral surface, then backprojecting
is simply a problem of determining how to map the intensity data onto the facets of the
polyhedral surface.

The simplest solution is to project a polygon facet of the surface into the intensity image to
determine the polygonal area that corresponds to projected facet and to warp the intensity data
with the projected polygon (using a standard image warping algorithm) so that it maps onto the
surface facet. One problem with this approach are that a surface facet may have a high angle of
tilt with respect to the intensity image plane, and, therefore, the backprojected data will be rather
poorly mapped onto the surface. Since the surface will be recorded from multiple views, this
problem can be reduced by backprojected surface data from a view which has the smallest tilt
angle with respect to the facet to be mapped. Another solution would be to used data from a
number of views and to determine the most consistent surface detail, given the data from all
views.

If the surfaces are approximated by polyhedral surfaces, a combined surface can be constructed
by merging the polyhedral surfaces. However, problems with this approach are (1) the
overlapping areas of two surfaces will not necessarily be approximated by the same polyhedral
approximation, and (2) surfaces that overlap may not have the same surface detail.

One solution to these problems would be to determine an optimum "seam" at which to merge the
polyhedral surfaces and trimming the excess surface data beyond the seam. This may require
creating new surface facets along the seam and remapping the surface detail onto these new
facets.

E-2.4 3-d Object Tracking Using Surface Data

KMS has developed an innovative object recognition algorithm that is based on a newly
discovered approach to object pose determination.?! One of the unique aspects of the KMS
recognition algorithm, called Recognition by Iterative Spring Energy Reduction (RISER), is that
it applies to range imagery and intensity imagery equally well. To provide a demonstration of
the practical application of the range data produced by VGD’s the SURPHACE camera, as well
as the 3-d models produced by VGD, KMS will test RISER on VGD range images and 3-d
models.

In the RISER algorithms, 3-d model data representing objects that may appear in a scene, is
matched to the range image of the scene. Efficiently matching models of objects to range data is
equivalent to efficiently recognizing and tracking objects. Although range images, unlike
intensity images, directly provides the geometry of the scene, the problem of identifying objects
is nevertheless quite difficult.

Specifically, a number of problems must be solved. For example, the algorithm must be able
* To work with noisy, incomplete sensory data; parts of objects are often occluded,
distorted, or out of the field of view.
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* To identify object descriptors that are both selective, i.e., they are not too common
among the objects to be recognized, and significant, i.e., the probability that they
appear at random in the scene is small.

* To handle translation, rotation and scaling of the object to be tracked or identified.

* To efficiently compare surfaces of models with the surfaces of range data, without an
early commitment to a match.

* To form matches based on a consensus of a large amount of data rather than relying
on cues provided by a few, likely error-prone, features.

* To robustly converge to the correct match between model and range data.

During the development of its object recognition algorithms, it has relied on many insights
gained from developing algorithms for 2-D and 3-D object recognition systems.33 3! In
particular, the following techniques that were developed for the STORS 32 algorithm, which
recognizes 3-D objects in 2-D images, are equally valid for identifying objects in range data.

To work with incomplete data, the algorithm must use local data. In the STORS algorithm
the contours of an object were represented as a collection of overlapping segments, which
formed local neighbors of data. With this representation, large sections of the contours
could be missing or distorted without affecting the operation of the algorithm. Analogously,
in the RISER algorithm, both the model and range data are represented as a collection of
overlapping surface patches. We desire to keep the patches as small as possible to lower the
probability of the patch being occluded.

To construct unique descriptors, the algorithm uses widely spaced sets of spatially local
patches. Because each patch’s data is defined over a small neighborhood, the patches has
similar attributes, especially on smooth objects. In the RISER algorithm, descriptors consist
of pairs of surface patches. The patches in descriptor are chosen from different regions of
the surface contour and are not necessarily spatially close or overlapping. Descriptors of this
type have a number of geometrical attributes, such as the angles between the normals at the
center of each patch, the principle curvatures at each patch, etc., that allow them to be
differentiated from each other.

The descriptors must be made invariant to translation, rotation, and, if absolute range data is
not available, to scale. We may accomplish this if by choosing the attributes of the
descriptors propetly. In the RISER algorithm the attributes of a descriptor are chosen relative
to a local coordinate frame defined by the two surface patches. This makes the descriptors
invariant to translation and rotation. We can make the descriptors invariant to scale by
fixing the ratio of the radius, r, that defines the local surface patch neighborhood, to the
distance between patches, d. If absolute range data, such as that provided by VGD’s
SURPHACE camera is available, the descriptors do not need to be scale invariant.

To efficiently match surfaces and yet avoid early "lock in" on a possibly erroneous match,
the algorithm uses an approach of gradual commitment. As in the STORS algorithm the
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descriptors of the model are, at first, compared to all of the descriptors of the range data. To
speed up this initial comparison, the descriptors of the range data is stored (as in the STORS
algorithm) in a kd-tree,>* indexed by the attributes of the descriptor. If n is the number of
range descriptors, retrieving all descriptors having a fixed range of attributes is O(log n). If
m model descriptors are compared to the n range image descriptors, the total complexity of
comparison is O(m log n). This is far more efficient than correspondence approaches?5-
which have high order polynomial or even factorial order runtime complexity.

To obtain a consensus of the data, the RISER sets up a set of pseudo forces between similar
model and range descriptors. In effect, this is like connecting a 6-dimensional spring (3
translational dimensions and 3 rotational dimensions) between the descriptors, with a spring
constant proportional to the descriptor’s similarity. The spring attempts to pull
corresponding the model and range descriptors into alignment.

After pseudo springs have been connected to between the model and image descriptors, the
algorithm minimizes the sum of weighted pseudo spring potential energies. This is
equivalent to allowing the spring forces to reposition the model to lower the total potential
energy. To obtain a robust convergence to a correct solution, i.e., a correct match between
the model and range data, the RISER employs the robust statistical approach of reweighting
the spring constants. This is equivalent to checking the pseudo springs after at the pseudo
energy has been minimized and cutting or weakening those springs that are overstretched.

Robust statistics is a discipline that has found considerable use in eliminating the effect of
bad data in performing a fit of a parametric model to data. For example, in estimating the
pose of an object, an residual error metric £ on the parameters of the object’s model is
minimized. This metric is the sum of the norm p(°) of the errors between the poses of the
different descriptors. The poses of the descriptors is defined by a six-dimensional vector [1 =
(q, p ), where q is the quatemion vector that describes the orientation of a primitive and p is
a spatial vector that describes the 3-space position of a descriptor. If the norm p(e) is, for
example, the L, norm, then the error measure would be proportional to the square of
differences of the six-dimensional IT vector of the model and range descriptors. An altemnate
L, norm would measure the absolute value in the differences in the IT vectors.

While the L, norm often obtains a better fit, problems with this type of norm are that when
the error is very large for a given data point (i.e., a statistical "outlier"), the L, norm of the
residual makes a hugh contribution to the sum €, which in turn has a large effect on the view
parameter estimate that the comparable effect using, for example, the L, norm. A measure
of the influence of outliers is the ¥ function, which in one-dimension is defined by ¥(x) =
dp(x)/dx. (The y functions for the 1-dimensional L, and L, norms are shown in Figure E-5
(a) and (b).) As can be seen, the L, fit is "less sensitive" to to data sets contaminated with
statistical outliers than the L, fit because the "influence” of these outliers as measured by ¥
is constant rather than linearly increasing.
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Figure E-5: Above, (a) shows the y function of the L, metric, (b) shows the y function of the

L, metric, and (c) shows a redescending y function with maximum points at m
and -m, and cutoff c.

It can be even more desirable to utilize so-called redescending y-functions,3” such as the one in
shown in Figure E-5 (c). Empirical studies show that the detailed shape of the y-function is not
very important. The most critical features are the maximum ¥ points, which measures gross
error sensitivity, and the cutoff value, ¢, known as the finite rejection point.

The RISER object recognition and tracking algorithm uses a redescending y function to measure
the degree of match between the model surface and the range surface. After the pseudo-energy is
minimized at each iteration, the cutoff value is adjusted to a smaller value, and, essentially cut
the contributions from matching descriptors that correspond to statistical outliers. This, as
mentioned, is equivalent to cutting overstretched pseudo springs that tie the descriptors together.

In this way, although a consensus is used initially in determining a fit of the model to range data,
the final fit will be least affected by bad data.
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Section F

Quarterly Report #4: October 1990
F-1. Summary of Progress

VGD has progressed in two important directions since the last report. The first is in overcoming
of the major engineering obstacles in the path of developing of the SURPHACE camera, the full
view, dense field range sensor described in the previous report. The second is the development
of the user interface software. Much was accomplished in spite of the fact that relatively little
effort was expended during the quarter.

We reported previously that the SURPHACE camera is based on a new method for rapidly
acquiring surface data by projecting and phase-shifting sinusoidally varying intensity pattemns.
The patterns are produced by simply phase-shifting a slide with a sinusoidally varying
transmission coefficient in a projector, as shown in Figure F-1.1. The existing theory for this
technique relies on the pattern being close to perfectly sinusoidal. This, in turn, requires that the
spatial variation of the transmission coefficient of the slides be accurately sinusoidal.

As of the last report, we had fabricated slides that had roughly 20% harmonic distortion.
Harmonic distortion of this magnitude introduces a periodic error into the range images that is
unacceptably high. We reported previously that coping with this problem was the primary
engineering challenge we faced in the development of the SURPHACE camera. We also
reported that we would attack the problem using a two-pronged strategy. First, we would
continue to try to improve the quality of the slides. Second, we would attempt to extend the
analysis to allow the use of non-sinusoidal periodic functions. KMS is glad to report that we
have succeeded on both fronts. We describe the details of this work in Section F-2.1.

In addition to work on the range sensor, we have completed the software that will form the
foundation of VGD'’s user interface. This is important because the calibration subsystem, the
viewpoint determination subsystem, and the surface merging subsystem all require varying
degrees of operator input. Implementing the basic operator interface was necessary in order to
proceed with the implementation of other aspects of VGD. We describe this in greater detail in
Section F-2.2.

Little effort was expended on VGD's other subsystems, i.e., the calibration subsystem, the
viewpoint determination subsystemn, and the surface merging subsystem. There were two reasons
for this. First, the key personnel were heavily involved in several proposal writing efforts that
greatly reduced the time they could spend on tasks related to VGD. Second, the user interface
fell on the critical path of the development of these systems. Therefore, we postponed work on
these tasks until the user interface was complete enough to permit work to proceed. We wish to
stress that, considering the relatively small number of hours spent on VGD, much was
accomplished. Moreover, we expect that work will continue at a normal pace for the remainder
of the project.
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PROJECTED
COSINUSOIDAL PATTERN
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Figure F-1.1: SURPHACE obtains range by projecting three sinusoidal patterns that have
been phase shifted from each other triangulates on the resulting distorted
phase function to determine the range to the surface.

F-2. Technical Status

F-2.1 The SURPHACE Camera

We previously identified the goals of improving quality of the sinusoidal gratings on slides and
extending the phase-shift analysis to non-sinusoidal functions as the key challenges on the way
to developing the SURPHACE Camera. Solving either of these problems will make the
SURPHACE camera a viable sensor for VGD. We have succeeded in both endeavors. While
either of these techniques would suffice for the purposes of VGD, we expect that using them in
combination will permit us to use the SURPHACE camera for high precision metrology and
inpection tasks as well.

F-2.1.1 Fabrication of Accurately Sinusoidal Transmission Gratings.

The presence of harmonic distortion in the spatial tranmission function of a slide results in a
correspondingly distorted projected light pattern. The measurements of the scene with the
projected pattern, in the form of a set of phase-shifted images, are then also distorted. In turn,
this leads to distortion of the raw phase function and the range map itself. For degrees of
harmonic distortion less than about 20%, the resulting distortion of the raw phase function is
roughly proportional to degree of harmonic distortion in the intensity of the projected pattern.
The corresponding distortion induced in the range map is dependent on the geometry of the
imaged surfaces and the imaging apparatus. However, under conditions of interest, the induced
errors can equal the level of harmonic distortion.

In order to produce useful range maps using the current technique, the harmonic distortion of the
transmission grating should be kept below 5%, and, if possible, smaller still. Figure F-2.1 shows
a scan of the transmissivity of the best grating we were able to produce as of the last quarterly
report. Figure F-2.2 shows a plot of the absolute magnitude of the discrete Fourier transform of
this data. If we estimate the Fourier coefficient by measuring the area under the peak down to a
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point that is half as large as the peak, then Figure F-2.2 indicates that the grating of Figure F-2.]

has distortion that is dominated by the second harmonic, and that the magnitude of the distortion
is approximately 18%.
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Figure F-2.1: The spatial variation of the transmission coeffient of the best, i.e., least

harmonically distorted, slide that we had produced as of the last quarterly
report. The transmission coeffiecient times 100 is plotted on the vertical axis
versus distance on the horizontal axis. The entire scan covers roughly 3 cm.
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Figure F-2.2: Plotted is the magnitude of the discrete Fourier transform of the data plotied
in Figure F-2.1. Measuring the area under the peaks of the fundamental and
the second harmonic provides an estimate of the second harmonic distortion.
This slide contains 18% second harmonic distortion.
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Figure F-2.3 and F-2.4 are plots of the measured transmission coefficients of a low frequency
grating and a high frequency grating. These are our best gratings to date. Figure F-2.5 shows the
magnitude of the discrete Fourier transform of the data plotted in Figure F-2.4. From Figure F-
2.5 we can see that the second harmonic is nearly completely absent, and third harmonic
distortion, using the same estimation procedure as above, is 1.5%, which should be acceptable
for the purposes of VGD.

F-2.1.2 Computing the Raw Phase from Non-Sinusoidal functions

The other approach to solving the problem of nonsinusoidal transmissivity is to extend the phase-
shift analysis to the case of nonsinusoidal periodic functions. In the original phase-shift analysis,
the intensity function is modelled as a biased pure sinusoid with phase distortion arising only
from the geometry of the surfaces of the scene, i.e.,

I(x,y) = I,(x,y) + Ig(x,y) cos(Wpx+®(x,y)+¢,),
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Figure F-2.3: This is a plot of the transmissivity of a good low frequency grating. The

interpretation of the plot is analogous to Figure F-2.1.
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Figure F-2.4: This is a plot of the transmissivity of a good high frequency grating.
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Figure F-2.5: This is a plot of the absolute magnitude of the discrete Fourier Transform of

the transmissivity in Figure F-2.4. This plot makes evident the high quality of
the grating. Specifically, the second harmonic is negligible while there is only
1.5% third harmonic distortion.

where /,(x,y) represents variations in the intensity due to background, or ambient lighting, and
Ig(x,y) represents the variation in contrast of the cosine pattern due to the photometric properties
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of the objects imaged. The term ¢, represents a phase shift that will be introduced into the pattern
by moving the slide in the projector. In this case, by judicious use of various trigonometric
identities, we can show that the raw phase function, ¢(x,y), can be recovered through the simple
formula

O(ry) = tan" ' (2, - Iy - [, - I)), ()

where the index on [ indicates the angle of the phase shift in degrees. For speed, the inverse
tangent can be stored in lookup table.

If the grating is periodic, but not necessarily sinusoidal, the intensity function must be modelled
by
)

where the g; are the Fourier coefficients of the function, and 7 is the number of terms being kept
in the Fourier expansion of the function. We are assuming that the Fourier coefficents are
known, since we can directly measure the transmissivity of the grating and perform Fourier
analysis to obtain the coefficients. If we let

QY = @y - I - I - Iy) 3)

and insert Eq. (2) into Eq. (3), we obtain the modelled intensity quotient
where f{®(x,y)) is Q(x.y) = Ad(x,y)), 4
(5

However, we can measure Q directly from the phase-shifted images by using Eq. (3). Denote the
measured value for Q as Q.. Then, Eq. 4 can be written as
Q) = ox.y). 6

It is not possible to obtain an analytic formula for f ! However, we can use Newton’s
method to solve for ®(x,y) as follows. We know that in the case where there is only one term in
the expansion in Eq. (2), £/ reduces to the inverse tangent function. Using this as a starting
point, we can iteratively run Newton’s method, gradually increasing the magnitude of the
coefficients of the harmonics in the expansion until they attain their measured values. If the
coefficients are increased slowly enough, the solution will always be the physically meaningful
one. In this way, we can compute a table of values for f°1. This needs to be done only once for
each grating. The table can then be used over and over to quickly obtain the raw phase ®(x,y)
from the measured value of Q using that grating.

Figure F-2.6 shows a one-dimensional synthetic intensity pattern. This pattern has harmonic
distortion of 20%. To within isolated discontinuities of 27, the phase of this pattern should be
perfectly linear. Figure F-2.7 shows the phase computed using the technique we have just
described. Indeed, the raw phase plot in the figure is perfectly linear save for isolated jumps of
2.
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Figure F-2.6: Synthetically generated intensity profile with 20% second harmonic distortion.
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Figure F-2.7: Raw phase of the intensity profile computed using the technique described in
the text for extracting the phase of a nonsinusoidal function. As expected, the
phase of the pattern is linear except for jumps of 2.

As we mentioned previously, either perfecting the slides or extending the analysis would have
cleared the way for us to use the SURPHACE camera in VGD. Since, in fact, we have succeeded
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in both endeavors, extremely accurate measurements should be possible with the SURPHACE
technique by correcting for the small harmonic distortion present in even the best grating pattern.

F-2.2 User Interface Library

Many of the functions of VGD require the user to react to data that the system has gathered. For
example, to calibrate the cameras, the user will take an image of a calibration card and the system
will ask him to point to specific lines on the card. Similarly, the viewpoint determination
subsystem requires user input, as does the surface merging subsystem. However, each of the
subsystems has different requirements. Therefore, a general library of user interface routines for
creating windows, displaying images, graphics and text, etc. has been developed in this quarter.
The routines are built around the X windows standard, and are therefore very portable.
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Section G
Quarterly Report #5: October-December 1990

At the end of 1990, several large scale computer reconfigurations were forced on KMS and
apparently the original word processing sources and graphics used in this quarterly report could
not be found in computer readable format. Consequently, this quarterly report has been
incorporated without editing into the final report on the pages that follow this one.
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1. Overview of the VGD Project

The primary goal of the VGD project is to develop a system that can capture computer
models of real-world objects as 3-D textured-mapped surfaces. The VGD system will achieve
this goal by (1) providing a range camera that can input registered range and texture data, (2)
developing software modules that can merge the camera data into one coherent surface, and (3)
developing software data structures and modules for efficiently displaying surface data.

One of JPL’s major objectives in supporting the VGD system is to develop computer
models that can be used in tracking 3-D objects. To address this objective, the models, provided
by the VGD system, will be stored in a format that will allow the models to be quickly
manipulated. This would allow, for example, a VGD model to be used in a closed loop estimator
that, in turn, could be used to track the motion of a 3-D object in real-time {Gottschalk et al.,
1989].

To build up models of objects, the VGD system will:

a) Capture registered range and texture surface data from a sufficient number of views to
cover the entire surface of an object.

b) Determine the trahsfonnations between the views at which surface data is captured.

¢) Merge the surface data into one coherent surface that is stored in a format that allows
the data to be quickly manipulated.

Work performed during the last quarter has been directed toward developing the
SURPHACE sensor (i.e., a SUrface Reconstruction by PHAse-shifted CosinZ sensor), described
in the last quarterly. The SURPHACE sensor consists of (1) a structured lighting unit, that
projects a sequence of cosine patterns of different phases onto the surface of an object of interest,
and (2) two CCD cameras, that input and digitize the cosine parterns. Changing the phase of the
cosine pattern by a number of known phase steps allows the range and surface albedo, i.c..
texture, of a surface to be isolated from the background lighting and captured at each pixel.
Moreover, using cosine patterns of different spatial frequencies (See Section 2.2) allows the
SURPHACE sensor to extract the absolute range of surface points.

In addition, in order to merge surface data, work has also performed in determining ways of
registering surface data taken from different views. In the current approach, surface markings
that appear within two views will be used to cross register views (see Section 3). Registering can
be further refined by manipulating surfaces so that. in areas where the surfaces overiap, the range
and texture of surfaces is optimally matched (see Section $.6).

To provide meaningful range data, the projector and CCD camera used in the SURPHACE
sensor must be inter-calibrated (See Section 4). Work, therefore, has been performed in
developing a calibration model for cameras, for projector/camera subsystems, and for the
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camera/camera subsystem. Careful analysis has also been performed, for example, in linearizing
the response of the CCD cameras for the individual pixel and across each scanline, to remove
sampling artifacts, and to accurately determine the relative geometries of the projector and the
cameras.

Effort has also been spent on determining methods for efficiently manipulating and
displaying registered range and surface data. To simplify this task, the VGD system will use a
model of a surface that consists of a set of pixe/ meshes [Williams, 1990] where each mesh. in
turn, is made up of an array of range/texture pixels, that represent data captured from a particular
view (see Section 5). With this data structure, surface dara is kept at pixel resolution (as opposed
to being stored in a polygon facet and then resampled when it is rendered in a scene, as is
generally done). Using the pixel mesh representation, surfaces will be manipulated using
standard warping operations to rotate (in-viewplane rotations), translate, and scale a surface.
Tilting of a surface will be perform using a special scan-line tilting algorithm (See Section 5.1).
To provide an integrated surface, the pixel meshes will be patched together along adjoining
boundaries, and each pixel mesh will contain hooks that allow patched data from different views
to be combined and displayed as one surface.

Finally, we described how the surface models input by the VGD system can potentially be
used for tracking 3-D objects (see Section 6).

The following sections will describe the work that has been performed in more detail.

2. Capturing Registered Range and Texture Data.

2.1 Background

In review, the VGD System will use a phase-shift structured lighting system, i.e., the
SURPHACE sensor, that acquires registered range and intensity data. Conceptually, the
SURPHACE sensor projects a phase partern onto a surface and inputs the phase pattem via CCD
cameras. Because the phase pattern, is relatively unaffected by the surface properties of the
object, and because a one-to-one correspondence can be found between the projected phase and
the input phase, the system can triangulate surface points for each phase value (see Figure 1).

2.2 Capturing Phase and Albedo Data

In practice, the phase function, ®_(x,y) = wq*x. projected by the SURPHACE sensor 15
encoded in a set of intensity patterns lpi = [y*cos(wy*x + ¢,) with a fixed spatial frequency, w,
and a phase offset ¢;. After projecting this set of parterns, the sensor measures the distortion of
°p caused by the surface in the form of a phase function, 9°(x,y) retuned to the camera. The
sensor images the phase function ®.(x,y) encoded as a set of intensity patterns,
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Li(xy) = Iy(x,y) + [(x.y)*cos(® (x,y) + ). (1)

where I,(x,y) is the contrast of the pattern due to the photometric properties of the objects
imaged, i.e., the albedo of the surface, and Iy(x,y) represents variations in the intensity due to
background, i.e., ambient lighting or shadows.

Projector Cosine slide

~ 7

Stereo cameras

Figure 1: The SURPHACE seasor obtains range by projecting a phase pattern onto the surface
of an object, by inputting the phase via a camera, and by setting up correspondences
between the projected phase and the input phase.

The phase function ®.(x,y) is decoded from the intensity patterns (and, thus, isolated from the
contrast I,(x,y) and background illumination Iy(x.y) terms) by setting the phase-shifts #; to integer
fractions of 27 (e.g., #; = 27{/n, jm0 t0 n-1 and 0 > 3), and by using an inverse Fourier series transform.
Specificaily, ®.(x,y) can be obtained from,

Oc(x.Yg = m™ (TLej(x.)*sin(9)).Z L j(x.y) con(#)) @

Decoding Oc(x.j) can be performed efficiently with table-lookup. (Figure 2 shows an example of the
phase obtained from a simple object.)
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N

th a single cycle cosine pattern, the phase function @ % and the imaged phase function o would
appear approxunately as shown in Figure 3a. Because 0% and ©.® can be inverted with respect lo X (ie..
the functions xB] =@ ’/wo and xc are single valued functions of ®) a correspondence can be triviaily
found between the x;% and x.3 for each phase value ©.

Unfortunately, a single cycle pattern, in general, will not provide an accurate measurement of the
range. This is because CCD cameras are typically capable of quantizing only 256 grays levels.
Therefore, neighboring surface points of a slowing varying single cycle pattern may appear to have the

same phase value, making it impossible to determine an exact correspondence between xp and x, Sfora
particular value of 95,

Figure 2: The above shows some preliminary resuits in obtaining phase data for a simple
object, i.e., a coffee cup, using the SURPHACE sensor.

By using a multiple cycle projection pattern, however, (See Figure 3a) the SURPHACE
camera can project phases over a much greater range. allowing a more accurate correspondence
between the projected and imaged offset x.™ and xcm. Unfortunately, for multiple cycle
patterns, the phase function ®, M imaged by the camera may no longer be directly invertible.
This is because m recovered modulo 27, wraps around to 0 every 25 offset. This makes the
inverse function x m(o.y) multiple valued (See Figure 3b), and, as a consequence, makes the
problem of setting up correspondences between xpm(O,y) and x m(O.y) more difficult.

In addition, because the phase jumps that occur in Ocm can be due to either wrap-around in
the phase or can be due to physical surface jumps, there is no simple way to unwrapping the true
®.™, with the multiple cycle pattem alone.
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(a) For a single cycle pattern, the projected and imaged phase functions, ®, and ®...
are single valued and thus invertible. (b) With of a muitiple cycle pattern, that can
provide greater range accuracy, @, is no longer invertible. By using OC’ of a single
cycle pattern as a guide, the muitiple cycle phase function can be (c) unwrapped and

made invertible.

To solve this problem, we take advantage of the invertibility of the single cycle frequency
pattern by using the single cycle parttern, Ocs. as a guide to unwrapping the multiple cycle partern
OC"‘ (See Figure 3c), i.e., determining where to insert 27t offsets. This technique, however.
requires that two sets of phase-shifted patterns be projected and imaged, but allows accurate
range data to be captured.

To provide this capability, the current VGD system will use a set of calibrated cosine slides
of two different spatial frequencies. These slides will be mechanically transiated to provide
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phase-shifted cosine patterns and will be interchanged to provide both single and multiple cycle
patterns. Ideally, a spatial light modulator would be used to provide the phase-shifted single and
multiple cycle patterns.

2.3 Triangulating to Obtain Range Data

After a correspondence has been established between points of equal phase, 9, the range to a
surface point corresponding to phase ® can be determined using a accurate model of the
projector/camera subsystem. For example, to model the projector/camera subsystem, we can use
a pinhole camera model for both the camera and the projector (see Figure 4).

In the model we assume that the camera and projector have a coordinate frame with an
origins at their respective focal points, and the two frames are related by an offset d and rotation
R. For simplicity, we aiso assume that the projector and camera y coordinate axis are parallel,
although this is not a requirement for the system to be calibrated. Since the partern output by the
SURPHACE projector does not vary in the y direction, the problem becomes a 2-D problem,
where d can be treated as a two dimensional vector and R as a two dimensional rotation about the
y axis with rotation angle 6, i.e.

Ryx=c0s(8) Ry, =-sin(8)
Ry =sin(6)  R,;= cos(8).

Given the above projector/camera geometry and given the x location of points in the
projector and camera frame corresponding to phase 9, i.e., xp(o.y) and x.(9.,y) respectively, the
distance to a point can be found as follows.

Assume that the imaging geometry is as shown in Figure 4. To simplify notation, let the
ratios x /f. and xp/f be denoted simply by x and ?& respectively. If the rotation R and

transiation d betweeng'u'nes are calibrated (see Section 4.2) then the distance of the surface point
from the projector’s focal point, 2 and from the camera’s focal point, z,, must obey the relation

R(xc*ze. zo) + (dy, dy) = (x5%2,, 7).
Multiplying the individual terms in R, this relation can be solved for z  to yield
zo=(dy - xp"dz)/((l + xp"xc)"sin(e) + (x.P - X.)*cos(8)), (3

where @ is the rotation about the y axis of the camera coordinate frame with respect to the
projector frame.

After z_ is found, the 3-D location of the surface point imaged at location X(®) can be
determined from

Pg= (xc‘zc. yc'zc. z.).
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Figure 4: Given that the projector and camera y axis are aligned and given that the rotation R
and translation d between local coordinate frames is known, then triangulation of a
surface point with correspond phase in the projector and camera frames is
straightforward.

Furthermore, if the projector and camera coordinate systems have the same orientation and
only axoffsctofdttmmeequationforzccanbe simplified to

zc(on) = d/(xp(on) - XC(O.Y)). (4)

where the denominator Xp-X represents a normalized disparitry term. The disparity term is
similar to one that appears in the standard stereo camera equation, except that is this case the
offsets X and x . are normalized by their focal lengths.

From this equation, it becomes obvious that once the difference between the x offset in the
projector and x offset in the camera coordinate systems are known for a particular projected
phase value 9, then the distance to the surface point imaged with phase value 9, can be easily
calculated.




VGD October-December Quarterly Report

A

Once the phase ®.(x.y) and z(®.y) are found a relative surface albedo can be determined
from [,(x.y), if it is assume that the projected illumination falls off as the inverse of the distance
to the surface point and returning from the surface point.

2.4 Range Sensitivity

Determining the range sensitivity of the SURPHACE sensor requires an analysis of how Xe
and a:g affect z,. For example, from Equation (4), a differential in Z.. is related to differentials in

X X5 by,

c
dz /z, = -(dJcp - dx.)*z/d (5

where the percentage change in z, due to dx . or dxp increases linearly with z_, and inversely with
the offset distance d.

As described in Section 2.2, projecting a low frequency spatial pattern will not allow
sensitive range measurements to be made. The solution to this is to project a high frequency
cosine pattern onto the surface. However, the spatial frequency of the pattern, as viewed by the
camera, is bounded by the sampling frequency of the camera. For example, assume that there are
N pixels per scanline and that the camera model has a angle of view 2a (see Figure 4) where
-tan(a@) sx . stan(a), then an upper limit on the spatial frequency that would be resolvable by the
camera, would be N/(2*f.*tan(a)). This means that the sensitivity of dz, is limited by,

dz/z, s 2tan(@)*zJ(N*d). (6)

In other words the range sensitivity of the SURPHACE sensor depends on the spatial
resolution of the camera for any given view angle, and on the distance between the projector and
camera. As an example, for an object at 1 meter, with a view angle of 45, and a 512x512
camera, the distance from the camera to the projector wouid need to be approximately 16 cm to
obtain a measurement of the range to within 1%.

2.5 Potential Errors

Because the cosine pattern used to generate the phase-shift structured lighting has been
produced optically, the errors in are minimal within the slide. On the other hand, since the
cosine pattern is projected from a slide, errors in dz J/z for any depth are linear in translational

positioning errors, dxp, in the slide

Even worse, there are cases in which phase data and hence the range data will be completely
invalid, i.e., (1) surfaces in the scene that are input by the CCD camera but that are not
illuminated by the projector, (2) regions that absorb all of the projected light so that there is not
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enough variation in the illumination berween phase shifts to accurately determine the raw phase.
and (3) specular regions that are so bright that the camera is saturated and. therefore. do not vary
according to the model discussed in theory, yielding poor range data.

The three sources of invalid data are fortunately all characterized by very small variations in
the pixel values between phase shifts: case one will have no variation, cases two and three will
have little variation. This makes it possible to mask out invalid data by simply eliminating
pixels that do not have sufficient variation among phase shifts.

3. Registering Surface Data

One view of an object does not provide sufficient information to produce a complete model
of all surfaces of an objects. Thus, the object’s surface must be captured from several different
views, and the data taken at each view must be merged. To properly merge the data, data at
different views must be registered.

Permitting surface data acquired from any view requires that the relative transformation
between the viewpoints be determined precisely. We accomplish this by using landmark
features, i.e., features that can be easily identified in the surface data from several viewpoints.
We are investigating ways to select and detect the surface landmarks. Currently, landmarks are
hand-selected.

We describe the location of such landmark features by position vectors obtained from the
surface data using the camera/camera, or stereo camera subsystem of the SURPHACE sensor. [f
the position of a landmark feature i in viewpoint one was represented by the vector p;, and the
position of a corresponding feature in a second viewpoint was represented by vector r;, then the
two positions would be related by a rotation, R, and translation, t. These are the quantities that
must be determined in order to determine specify the geometrical relationship between
viewpoints. Mathematically, the relationship is

=Rp;+t

Now, if differences are taken between points p; and Pj and the corresponding points r; and rjto
produce difference vectors, Pjj and fije then,

By representing the rotation operator as a quaternion, a simple solution can be obtained for
determining the rotation between the viewpoints. Specifically in a quaternion representation, the
above relation could be written as,

‘ .
fjj =dR°Pjj*dR - Subjectto ggpeqp = 1,
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where "¢" indicates quaternion multiplication, and where the quatemion, qRr. and its conjugate,
9R* contains four variables that specify the axis and angle of rotation.

Surface markings

Camera at position 2

Figure &: 3-D measurements of the landmark features will allow vectors. p; and r; to be made
from different views. These vectors are related by the same transformation, (R.t).
that can be used to transform the surface data into one frame.

When more than three points, p;, are used, the problem is overspecified and can be solved
with least squares methods,

min qg* B qg, subject to qg'qg =1,
where qp now represents a 4x1 matrix of quaternion coefficients and B is a 4x4 matrix with

terms involving the difference vectors, p;; and r;;. This problem is an eigenvalue problem and its
solution is the smallest eigenvalue of {he mamx B. normalized to. 1. Once the quaternion

10
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rotation, qg, is found the rotation matrix R can be determined from qRr- In addition, once R is
determined, then t can be found by back substitution.

Another approach to registering surfaces without surface landmarks is use a device such as
the 3-Space Tracker (Raab et al., 1979] to determine the 3-D pose of the SURPHACE sensor will
it is acquiring data. The 3-Space Tracker uses a of three orthogonal magnetic coils mounted at a
fixed location to transmit magnetic pulses through space and a set of three orthogonal pickup
coils to receive the pulses and provide data that can be used to determine the absolute pose of an
object with respect to the transmitter location. Although the VGD budget does not permit the use
of a system of this type, it would be ideal for registered camera locations with surface markings.

Finally, fine-tuning of the registration between surfaces may be accomplished by correlating
the surface data between views, and by positioning two surfaces, that are to be merge, to
maximize the correlation between the range and intensity of the areas of surface overlap. If
registration using surface markings proves to be too crude to accurately register surfaces, we will
explore this technique (see Section 5.6).

4. Calibrating the SURPHACE Sensor

As described earlier, the SURPHACE sensor consists of a high intensity projector and two
CCD cameras. The cameras are used individually with the projector to obtain surface data, and
used in stereo to input the 3-D location of registration markings. This first capability is used to
input surfaces and the latter capability is used in register surface data in order to merge surfaces
into one coherent surface (see Section 5).

In any case, the problem of calibrating the SURPHACE sensor consist of three separate
calibration problems, i.e., (1) calibrating a single camera, (2) calibrating a projector/camera
subsystem, and (3) calibrating the camera/camera subsystem.

4.1 Calibrating a Single Camera

Calibrating a camera consists of linearizing the camera/digitizer transfer function and of
modeling the camera’s imaging geometry to enable correction of any non-ideal behavior.

4.1.1 Modeling the Camera

Linearizing the camera/digitizer transfer function was accomplished in two ways. First,
there exists a gamma correction potentiometer on the CCD cameras that allows the camera signal
to be partially linearized. Second, we found that pixels across a scanline, although having a
linear behavior individually, had an uneven response. The response to the same light values was
less at the beginning and end of the scanline than in the middle. Although the SURPHACE

11
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L
camera only needs a linear response at each pixel to determine range, it requires uniformity in

response over the pixels if surface albedo is to be properly measured. This problem will be
solved by calibrating the response across a scanline and using table lookup to correct a response.

In modeling a single camera, a number of problems were examined and solved. include
removing:

Distortion of pixel locations by imperfect lenses. The most prominent of these effects
is due to radial lens distortion.

*  Variations in the sampling frequency and the horizontal retrace digitization startup
timing that lead to inaccuracies in the horizontal scale factor and the horizontal
positioning of the image.

« Misalignment of the sensor array with the axis of the lens system, resulting in the
middle pixel not being the true center of the optical system.

To solve these problems a camera calibration scheme, described in the literature [Tsai,
1987], was adapted to create models of the CCD cameras used in the SURFACE Camera. The

basic geometry of the camera model is shown in Figure 6. Imaging can as described in Tsai
(1987] be viewed as required four steps:

Q z

! i L.(X..Y‘)
y O;\ /_x

--=(XY)
o

Yo P
(Y2
OF (Ryy Yoy « L)

Figure 6: The geometry of a single camera can be described reasonably accurately by a
relatively few set of parameters. Radial lens distortion introduce some error (ato
image measurements.

12
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1) A rigid body transformation from (RgysY w2yy) 10 (X,Y,2)
xy2)! = R(x\,v.y\,‘,,z‘,v)-r +T
2) A perspective projection with pin-hole camera geometry

X, = fx/z
Y,=fyz

3) A radial lens distortion with second-order polynomial approximation

X=X4= Xu(l+xr2)":
Y =Y4= Y, (14~

with 5 5
2 = X, +Y,
4) A digitization of real image coordinate (X,Y) to computer image (frame buffer) coordinate
(Xe.Yp)
= d X4 Cy
Yf = d.y X+Cy
with
4y’ = sedy
where

(XgYwZw): 3-D coordinates of point P in 3-D world coordinate system
(x,y.2) 3-D coordinates of point P in 3-D camera coordinate system
(X,Y): coordinates of the image coordinate system

(XgYq) distorted 2-D image coordinates of P

(Xf,Yf): digitized 2-D image (frame buffer) coordinates of (X, Y)
(X“,Yu): ideal undistorted 2-D image coordinates of P

(Cx.Cy): image frame center

(dx.dy): distance between adjacent sensor elements in X and Y direction, respectively
(dx"dy): distance between frame buffer pixels in X and Y direction, respectively

Sxi horizontal scale factor

f: focal length

13
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L T

x: radial lens distortion factor

dy and d,, are available from the camera and frame grabber specifications, as are N, and N £x for
an initial rough estimate of Sq- We can assume zero distortion (k=0) and unit focal length ( f=1)
at the beginning of the calibration procedure.

These parameters can be divided into two classes: intrinsic parameters and extrinsic
parameters. Intrinsic parameters describe the imaging process within the camera, while extrinsic
parameters describe the cameras relationship of the camera to the world coordinate system.
Thus, R and T in the equations of the rigid body transformation are extrinsic parameters, while
the remaining parameters, specifically f, «, (Cx'Cy)' and s,, are intrinsic parameters.

4.1.2 Determining the Camera Parameters

Calibration of the video camera consists of determining the intrinsic parameters. However,
since the transformation relative to any external calibration pattern must be determined, the
extrinsic parameters must be determined as well. However, the effort spent on determining the
extrinsic parameters is not wasted since we can use this information to calibrate the
projector/camera and camera/camera transformations by determining the transformation between
each of the SURPHACE subsystems’ coordinate frames with respect to the same calibration
scene. For example, determining the inter-camera transformation is all that is necessary to
complete the calibration of the stereo apparatus.

The VGD algorithm for monocular video camera calibration rests on the following
principle: given a 3-D calibration pattem consisting of line segments, if the camera is perfectly
calibrated, the inverse image of a point on one of the lines comprising the calibration partemn in
the computer’s image frame buffer coordinate system (the (X4, Y4) plane), which is a ray -
emanating from the camera’s optical center in the 3-D world coordinate frame, will intersect
perfectly the corresponding line in the 3-D calibration partern.

In reality, the parameters, intrinsic and extrinsic, will be only approximately known. Thus,
the ray will not intersect the calibration pattern line. However, the better the camera model
parameters are, the smaller the distance of closest approach between the ray and the line in the 3-
D calibration pattern will be. This is shown graphically in Figure 7. If many points and several
lines are used, the parameters resulting in the best calibration can be found by minimizing the
sum of the distances between the rays and their corresponding 3-D lines in the calibration
pattern.

Viewed from a mathematical perspective. the calibration process amounts to a nonlinear
optimization. For this reason the robust unconstrained optimization procedure will be used to

perform the optimization.

14
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In using optimization, we needed to solve the key problem of avoiding optimization traps
caused by singularities in the parameterization of the rotation R. A singularity is a point in the
rotation parameter space where Mmany parameter values map into the same rotation. When the
optimization procedure nears a singularity, it may search out in a direction that has no effect on
the rotation because of the singular values of the parameters. However, once this occurs, the
optimization procedure will not change the values of the other paramneters because, if it does, the
rotation is likely to change rapidly, increasing the error metric, effectively trapping the
optimization in the singularity.

3d
Calibration

Card Line \

Errors
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Figure 7: The camera model can be readily calibrated by using a straight line calibration

pattern and by adjusting the camera model parameters until the distance between
rays emanating from the focal point of the camera and the straight lines is
inimized

This problem was solved by parameterizing the rotation matrix using unit quaternions.
Specifically, a quaternion representation has no singularities or the type described above, only
the usual dipole symmetry that is unavoidable in any rotation parameterization (and which does
not cause problems for the optimization procedure).

To achieve the best possible camera calibration, we must determine the location of the lines
in the image of the calibration card to the highest possible accuracy. Conceptually, as described
previously, the location of the points in the image that correspond to a particular line in the
calibration card will be extended into 3-D space by a ray from the optical center of the camera

‘
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through the image point. Calibration will be effected by adjusting the camera parameters untu
the nearest approach of the ray and the 3-D lines forming the calibration card is minimized for a
large number of such image points. Thus, it is critical that the location of the points that make up
"lines” in the computer’s frame buffer image (the "lines” are actually slightly curved do to the
radial lens distortion) be determined with the highest possible accuracy.

The calibration algorithm allows the user to select a number of lines in the image by
clicking the mouse at pairs of points near the image lines. The aigorithm then searches
perpendicular to the line the user provided, looking for image lines. When found, the location of
the intersection points are determined to sub-pixel accuracy. This is accomplished as follows.

First, the image is resampled along the search line, using bilinear interpolation, to yield a 1-
d signal of length n, where n may be user specified. We model the cross section of an image
curve by a Gaussian pulse of width . The pulse is detected and accurately located using Boie
and Cox’s [1987] method. First optimal detection and localization masks are produced. The
masks are correlated with the signal derived from the image to yield a detection signal and a
localization signal. The points in the localization signal where a zero crossing occurs and the
detection signal exceeds a detection threshold forms a detected point. Linear interpolation of the
pixeis on either side of the zero crossing yields the location of the pulse to sub-pixel accuracy.

Although Boie and Cox’s algorithm uses hard thresholds, we have modified it to use a form
of adaptive thresholding, thus permitting a wide variation in the contrast of the imaged lines
without changing the user defined threshold value.

4.2 Calibrating the Projector/Camera Subsystem

In calibrating the project/camera subsystem, the primary problems are in insuring that the
projector is outputting an accurate cosine pattern, and that the geometrical relationship between
the projector and camera are accurately determined.

As described above the projector subsystem of the SURPHACE sensor consists of a high-
intensity light projector with a micrometer-mounted slide holder that permits accurate phase
shifting. A number of problems were encountered in manufacturing slides with accurate low
spatial frequency cosinusoidal patterns, but this problem was solved when a vendor {Sine
Patterns, 1990] was located who manufactures custom cosinusoidal slides of high accuracy.

The problem of modeling the projector is similar to that of modeling a single camera. To
model the projector/camera subsystem, we will use a pinhole model for both the camera and the
projector described in Section 2.3 (see Figure 8).
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Figure 8: Assuming an ideal pinhole camera and projector system and assuming that the y

axis of the projector and camera local coordinate systems are aligned, calibration of
the projector/camera subsystem of the SURPHACE camera becomes simply the
problem of determining the 2-D rotation R and the transiation d between coordinate
frames.

To calibrate the projector/camera system, we can place a screen at a distance z_, from the
projector. If a pattern with equally spaced points, with x spacing X, has been projected onto the
screen, then the spacing on the screen will be X0 *z,/f,- Assume that one of these points 1s
imaged at x. in the camera. To simplify notation, let and x /£, be denoted as xq and x..
respecuvely A ray from the focal point of the camera through the pomt Xe R can be ducnbed in
the projector frame by,

R(xcn‘zco zc) + (dx. %) { 7 )

where z,, is the distance from the focal point to a point along the line. Let zZ. N denote the
parameter that must be selected so that the position along the line corresponds to position.

NX0*Zp, on the screen, i.c.,

17
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R(ch"zcn, zcn) +(dy.d,)) = (n“‘xo"zp, z,) (3)

If this equation is used for two points at x offsets in the projector frame of n*xp*z, and (n-
1)"x0"? respectively, and if the resuitant two equations are subtracted, the following relation is
obtained,

R(x "z " - xc“'l‘zcn'l. z."- zcn'l) = (x9*2p,0). (9)

This relationship represents three unknowns, the rotation angle 8, and the parameters z and
z"'l. not enough information to solve for 8. However, if this step is repeated for two points at
offsets n"xo“'zp and (n+1)"x0’"zp, one obtains the equation,

N, N

R(xMHez 141 Mzt gz M = (xg*2p 0). (10

c X

To set of equations in (9) and (10) can be solved for the angle of rotation, 8. After  is found the
vector d can be found from the previous relation involving d.

By using even more points, the system of equations become overspecified, and can be
solved using least squares optimization for a more accurate final result.

Once the projector/camera system is calibrated, the surface points can be triangulated as
described in Section 2.3 to obtain surface range.

4.3 Calibrating the Camera/Camera Subsystem

The purpose of calibrating the camera/camera subsystem is to provide a stereo camera
system to be used in registering views of a surface. The system will input surface markings and
determine the distance to the markings within each view and use this data to roughly find the 3-D
transformations between views (see Section 3).

Even though the cameras may be calibrated with respect to the projector, they will not
necessarily be calibrated with respect to each other. This is because the y axis in the camera and
projector system were aligned and the projector output a pattern independent of the y axis.
Therefore the two cameras may be out of calibration in the y direction.

Using stereo to input distances requires setting up correspondences between features in one
image with features in a second image. This can be done quite easily if the features in one view
are along the same scanline in the second view. This is called the epipolar constraint. To insure
the the cameras in the VGD system satisfy the epipolar constraint, a calibration pattern of
intersection lines will be projected by the projection system onto a screen perpendicular to the z
axis of projector (using a similar geometry to that show in Figure 8). The location of the lines
can be identified accurately using the algorithm described above, and, therefore, the location of
the intersections of the lines can also be accurately described. By aligning the cameras so that

|8
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intersection points fall on the same scanlines within both cameras. and by knowing the
calibration between the camera and projector, we will be abie to easily determine the relative
distance and rotation between camera frames.

5. Merging Surface Data into One Complete Surface.

As described above, the VGD SURPHACE camera will be used to capture the texture (i.e.,
detail) and range of the surface of an object for a set of digitized views. This data will be used to
reconstruct partial surfaces of the objects. Since markings on the surface of an object will be
used to establish the relationship between these surfaces by establishing the coordinate
transformations between the views from which the surface data is captured, the final step in
reconstructing a 3-D model of an object will be to use the relationships between surfaces to
merge the partial surfaces into one coherent surface.

Some of the problems associated with merging surfaces are that,

* Errors in the view coordinate transformations will result in poor surface merging, with
the result that surface texture will have discontinuities due to an incorrect overlap of the
surfaces during merging.

* The surface data is captured as image data and must be converted to some form of
graphical data structure for rendering.

* A technique must be devised from joining surfaces. This technique must not leave
“gaps” in the merged surface.

To solve these problems we will investigate (1) approximate surfaces by a pixel mesh, (2) ‘
globally optimize the surface fit between surfaces of different views using a surface matching
strategy that uses both range and texture data to adjust the view coordinate transformations, and
(3) connect pixel meshes between views to obtain a coherent surface.

In the following we will present a discussion of each of these steps.

5.1 Converting Surface Data to a Pixel Mesh

In order to match surfaces from different views, the surface data must be mapped into a
common frame and sampled on a common sampling grid. For example, the range data that 15
captured by the SURPHACE sensor will be sampled along rays that emanate from the focal pownt
of the CCD camera and that intersect the surface at some point. To perform a comparison
between surface data in two differemt views, surface data must be mapped between frames and
sampled at the same sample points.
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One possibility would be to approximate surface data by a polygon mesh [Foley and Van
Dam, 1982], to map the texture data into the polygon facets, and to manipulate the surface data
by manipulating the polygons. Then when two surfaces are compared. for example, during
surface merging, the polygons and the texture data stored in the polygon facets would be
resampled to obtain range and texture data at a set of sampling points.

A simpler approach, to be used in VGD, will be to sample the surface data in after it is
orthogonally projected and to use standard image warping operations to manipulate the surface
data. We will refer to this form of data as a pixel mesh in which conceptually each pixel of the
resampled surface corresponds to a vertex of a faceted surface (see Figure 9). When surfaces are
manipulated, surface data will be remapped, using image warping operations. For example. the
orthogonally sampled surface data in view 2 is mapped into view frame 1 through a set of simple
2-D scale, rotation, and translational warping operations, as well as a new 3-D tilt operation.

Range

Texture values

Surface facet

Pixels

Figure 9: Each pixel in the pixel mesh is connected to its nearest neighbors to form a set of
surface facets. Both the range and texrure are stored at the pixel locations.
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5.2 Manipulating the Pixel Mesh

To define our terminology, a 2-D rotation will consist of a rotation about the orthogonal
view direction of the pixel mesh. A tilt, on the other hand, will consist of a rotation about an axis
perpendicular to the orthogonal view axis (i.e., in the x-y plane in Figure 10).

Range

Range
Texture values

Facets

Figure 10: Rotations about axis perpendicular to the view-axis will be handled by a special tilt
operation in which the data is tilted aiong a scanline. In tilting, facets between
sample points are tilted and then scan converted into new range values at the
original sample point locations, using a scan-line z-buffer.

2-D scaling, rotating, and translating a 2-D image can be performed efficiently on a pixel
mesh using standard image warping operations [Catmull and Smith, 1980]. The only
complication is in tilting a pixel mesh. This is because a pixel has a range value, and, therefore.
when the surface is tilted, the pixels must manipulated to reflect the rotation. For example, a
pixel mesh may fold over on itself, i.e., have locations that are mulitiply defined, due to the fact
that pixel points having different range values now occupy the same x and y location. However,
this type of operation can be handled using a scan-line z-buffer algorithm.

To perform tilting operations we will use a scan-line z-buffer algorithm, i.e., tilting of a
pixel mesh range/texture image about an arbitrary axis will be done by first rotating the image
about the z-axis (i.e., the axis perpendicular to the image plane) so that the tilt axis is aligned
with the y-axis. The data is then tilted via a scanline algorithm and then rotated so that the tiit
axis is its original direction.

e I
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When tilting about the y axis, each pair of sequential pixels in the pixel mesh can be treated
as a linear line segment in a horizontal slice of a surface. To tilt a surface, each line segment 1n a
scan-line is rotated about the y-axis and resampled at the points of the pixel grid. The values of
the texture and range at the sample points can linearly interpolated from the texture and range
values of the tilted line segment.

As in a standard z-buffer algorithm, if during the linear interpolation and sampling, the
range value at a sample point has a value smaller than the value previously stored at the sample
location, then the value will be assigned the current range and texture value. If, however, the
range previously stored at the location is larger than the current value, the range and texture
stored at the location is unchanged.

After each scanline of the image is tilted using this approach, the image is then rotated back
to its previous orientation. This approach, thus, is simple and yet provides a general mechanism
for tilting a range/texture image.

5.3 Comparing Pixel Meshes

Once a pixel mesh has been mapped from view 2 to view 1, it can be compared to the pixel
mesh within view 1. Both the texture and range data will be compared using a texture and range
metric respectively. Evidence of a match between two patches will depend on a weighted sum of
the values returned by the texture and range metric. After the initial tilting operation,
comparison of surface data is completely performed in 2-D.

5.4 Globally Optimizing the Surface Fit

Although views will be registered as described in Section 3, realistically, the
transformations between views obtain using the describe approach will contain some errors. As
a consequence, when the surfaces from different views are combined, discontinuities in the
surface texture and range will appear in the combined surface along the boundary at which the
surfaces are merged.

To minimize this problem, we will investigate the use of a global optimization approach n
which, starting with the transformations obtained during registration, surfaces will be optimally
fit together to minimize a global fit criterion. Fitting will be done by attaching spring-like forces
between similar surfaces (see Figure 11), and by allowing the attached pseudo-springs to settle to
a stable state. This approach will allow the transformations between view frames to be globaily
adjusted until the combined surface data has minimum discontinuity.

Specifically, using the initial view parameters established, surface data from different views
will be matched in pairs. Consider the two view frames shown in Figure 11a. The approximate
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overlap of the surfaces | and 2 can be found by mapping the region of valid data in view 2 inro
region of valid data in view | (see Figure 11b) using the transformation established during the
registration step. 6-D pseudo-spring forces (with energy based on differences in coordinates and
orientation) will be attached between similar regions within the two views. This technique will
be repeated for all of the views that have overlapping coverage. Finally, the view parameters
berween views, i.e., the 3-D translations and rotations between views, will be adjusted until the
sum of the total spring energy is minimized.

Surface - View 1

Surface texture and range features

Surface - View 2

Similar features

Figure 11: Surfaces will be compared and a set of pseudo-springs will be set up between the
surfaces, where the springs will be attached between areas of similarity.

Using a robust statistics approach, springs that are overstretched will be cut and the energy
of the remaining springs will be minimized. The technique of clipping overstretched springs is a
method of removing outliers or false surface matches from the optimization process. Clipping of
spring forces will be repeated until the surfaces are well matched globally, i.e., when there are no
highly stretched pseudo-springs.

5.5 Segmenting the Surface into Best Estimate Regions

After a optimum set of transformations berween views has been determined, an initial view
will selected. For example, assume that view | is selected. All views that that share surface data
with view 1 will then be mapped into view 1. Views that overlap view |, but provide data
outside view 1 will be marked in the view 1 image. When mapping surfaces from other views
into view | some data will be lost due to foldover | Le.. self-occlusion). The location surrounding

“ e —
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the pixels at which this occurs. that is. the border of the foldover will be marked. This marked
area represents the locations at which data must be patched in from other views to complete the
surface data capture in view |.

It is also possible to determine for each pixel of the range/texture images in view |, whether
or not data from another view might better represent the texture and/or range value at the pixel.
For example, the normals of the surface (defined by the range data) can be used to determine the
view that has the least oblique angle to a surface for a region of pixels. If this option is
implemented, the region within view | that is better estimated by a different view will be masked
out and surface data from the other view will used to patch the surface at this location.

After the surface from a particular view has been segmented into best estimate regions. it
consists of a set of surface patches that are best described by a particular view. For example, in
Figure 12, a region of the surface in view 1 (shown crosshatched) may be best described by
surface data from view 2. This region is masked out in view 1 with the idea that data for the
region will be supplied from view 2. In the special case, when surface data is visible in view 2,
but is invisible to view |, the visible data must be connected from view 2 into view 1 (See
Figure 12).

, Masked region
Surface - View 1 \ Surface patch - View 2

Pixel Mesh

Figure 12: Pixel meshes will mask out areas that were badly captured or not visible from a
particular view. They will also contain hooks into data from a different view.

To connect the pixel mesh in view | with other pixel meshes taken from alternate view, the
boundary points of the pixel meshes of the alternate views will be mapped into view 1, and each
pixel along the mapped boundary will be tied to the closest pixel point in view 1, thereby
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connecting the external meshes with the mesh in view 1. This process will be repeated for ail
views until, the entire surface is connected.

Using this technique will allow the surfaces of an object to be recorded from arbitrary
angles and to be interconnected to form one coherent surface. The technique, because it is done
is piecemeal fashion, does not restrict the objects to any particular imaging geometry.

5.6 Assigning a Polygon Mesh to Surface

An alternative to a pixel mesh approximation of a surface would be to approximate the
range data of the surface by a polygon faceted surface using as few polygons as possible. This
can be done quite simply using one of several (non-optimal) algorithms [Faugeras et al. 1986,
Schmitt et al. 1985]. Schmitt for example approximates essential a 2-D range image by a
interactively generated triangular mesh. Once the polygon mesh is established, the texture
associated with the pixels that belong to the surface approximated by a polygon facet would be
mapped into the plane defined by the facet.

The advantage of this approach is that it would less storage to represent the surface of the
object, and it would require less computation to manipulate a surface. A disadvantage is that the
texture mapped into a facet is artificiaily distorted to fit onto the planar facets of the model and.,
thus may not model the texture of an object accurately. Another disadvantage is that surface
texture of each facet must be separately warped to move with the facet. This would require
either resampling the texture (as performed on Silicon Graphics Power Series workstation using
MIP maps) or warping the surface texture for each individual polygon facet using a 2-D image
warping operation.

For simplicity, the pixel-mesh approach will be implemented first.

6. Model for JPL to be Used in Tracking

In talking with the technical monitor, we found that one of goais of the VGD project should
be determining a method of building models of objects that can be used in a vision database to
locate and track objects. Therefore, one of the approaches that we have recommended in past
reports for tracking objects requires a 3-D model of an object that can be continuously rotated.
translated and scaled to provide the range and texture similar to that of the object being tracked.
This model would be used in a closed-loop estimator, in the model would be continuously
compared to an object to obtain an optimum match. The view parameter at the optimum match
would then be used to estimate the view parameters of the object.

Two possible models are possible for this approach: one is an object-centered model and the
second is a image-centered model. An object-centered model is a more common representation
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in which an object is defined with respect to a coordinate origin fixed in the object, for example,
a 3-D polygon-mesh representation. The image-centered model is described below.

6.1 Image-centered Model

In an image-centered model the distance to the model and its appearance are completely
defined by a set of overlapping range/texture images. For example, Basri and Ullman [1988]
have proposed a simple version of an image-based model (the B-U model), in which edge images
are extracted for number of widely separated views of an object. As an object is tracked a system
can switch to the nearest view to obtain an image of how the object should appear. The image at
a particular view can be rotated, translated, and scaled within the image plane to maintain
tracking. In order to reduce the number of views needed to track an object, data can be
interpolated between views. In the B-U approach, for example, the local surface curvature at
each edge point is extracted with the x, y, and z location of the point. Using this information,
Basni and Ullman were able to accurately interpolate the appearance of edge pixels for views in
between widely space sampled views.

One problem with the B-U approach, however, is that it does not deal well with the self-
occlusion that occurs when an object is rotated. Edge data, initially, hidden behind a surface of
the object in a sampled view, should suddenly appear as it becomes unoccluded. Data that is
visible should disappear as it becomes self-occluded. The B-U algorithm fails to model this
effect. As aresult, a significant amount of edge data is not used in the B-U model. In addition,
the B-U model does not model surface texture or range--data that could greatly improve object
tracking.

An approach that models self-occlusion and carries texture and range data is the pixel-mesh
model with warping described in Section §.2. We will refer to this as a pixel-warp tracking
model. In this approach, an estimate would be initially made for the view parameters of an
object that is being tracked. This estimate would be used to select the sample view with the
closest set of view parameters. Rotations about the z-axis, translations, scaling and tilt on the
range/texture will be performed directly on range/texture images to cause the images to track a
the range/texture of the real object.

The regions within the surface that are best estimated by other views will be patched into
the image. More precisely, the patched regions will first be transformed into the current view
and then transformed to matched the current view parameters (in fact, one combined
transformation incorporation the transformation into the current frame and the transformation to
the correct view would be applied to the pixel region) The texture and range of this surface can
then be compared to those of the real object and view parameters will be adjusted to minimize
the differences between these measurements.

An image-centered model of the type proposed has the advantages that the model captures
the surface texture and range that would imaged by the sensors used in tracking. No unneeded
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data is carried along. In addition, the surface texture provided by this model accurately portrays
the actual texture of the object model.

6.2 Object-centered Mode|

An altemnate approach will be to provide an object-centered frame model, as described in
Section 5.9. Then when the surface is rotated, translated, or scaled during object tracking, only
vertices of the mesh will need to be transformed to model the changing range data. However, the
surface texture within each triangular facet will need to be warped to match the transformation of
the model.

In the initial VGD system we will initially produce an image-based model of the object,

since it is a simpler model to work with and easy for us to manipulate, given the hardware
supplied by the VGD system.

7. Summary

In summary, current wark on the VGD system has been to,

- Develop a sensor (i.e., the SURPHACE sensor) that can input registered range and
texture data, using a phase-shift structured lighting,

- Calibrate the sensor to provide accurate measurements of the range data,

- Developing algorithms to approximately register surfaces, using surface markings,

- Determine a pixel mesh format to be used in storing the intermediate range/texture
images, and allowing the data to be manipulated in refined the registration between

surfaces.

- Define a model of a 3-D object which consists of pixel meshes patched together to form
one coherent surface.
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Section H
1991 VGD Progress Report

During 1991, KMS failed to submit any progress reports. Just as the sixth progress report
became due, development work on the project was suspended by KMS until it could be
determined whether or not the contract would be novated. At that point, KMS notified NASA of
the reason for suspending work. Following the suspension, The only authorized activities that
continued past March 1991 were the preparation of "cost to completes” and preparation for a
VGD project review.

Prior to project suspension, however, the project was on the verge of success. Dr. Gottschalk had
demonstrated that the SURPHACE camera could be used to acquire surface prefiles and
developed the code necessary calibrate the CCD cameras in the SURPHACE Camera. This step
is needed to remove radial lens distortion and to convert the x and y pixel locations into
meaningful coordinates with respect to a camera model. We have also work out the details of
how surface data can be manipulated in the VGD system. All hardware, with the exception of
the array processor in multi-cpu mode was working and independant software modules had been
developed which met the basic VGD project objectives.

Although Dr. Gottschalk had just been able to demonstrate that the camera worked, the results
were not as accurate as he wanted. Asa consequence, some time was spent in perfecting camera
calibration techniques. At the point that work on the project was suspended, improved camera
calibration techniques had been developed and Dr. Gottschalk was ready to start using the
SURPHACE camera to acquire surface profiles.

Once this was done, the next main task was to acquire images from different angles ancl to merge
these images together to generate a complete 3-D surface profile of the object being viewed. The
last work done by Dr. Gottschalk was to develop prototype code for acquiring anc merging
images. This code was not tested prior to Dr. Gottschalk’s departure.

Although from a technical standpoint, the project looked like it might succeed, the apparent lack
of funding to complete the contract caused first one investigator (Amold Chiu 4/29) and then the
other (Dr. Gottschalk 7/10) to terminate their employment with KMS. When Amold Chiu left,
there was no time to transfer his information to Dr. Gottschalk. When Dr. Gottschalk left, he
attempted to brief Dr. Jerry Turney on the status of the project. Unfortunately, Dr. Turney was
activly working on another project, and all direct charge VGD work was suspended so there was
no time available for him to document the work done by either Dr. Gottschalk or Amold Chiu
and when Dr. Turney was terminated in September 1991, no remaining staff in Technical
Programs had any detailed technical knowledge of any of the work which had been done on the
contract.

In the following sections, the work done by Dr. Turney and Dr. Gottschalk in calibrating the
VGD sensor is presented. These sections were to be part of the six quarterly report which was
never submitted. The text which follows is presented "as is" because the written inputs from
Dr. Tumey and Dr. Gottschalk for this report were never completed.
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Camera Calibration

0.0 Abstract

{This section was not completed before Dr. Turney was terminated}
1.0 Background

{This section was not completed before Dr. Turney was terminated}

/ Camera Calibration
)
Camera Viewpoints

Registration

Stereo Color CCD Cameras

BE| A
' Surface Patches
Graphics Workstation — Unification
Figure. 1 The VGD Camera System in Operation.

The VGD camera was proposed to be a hand-held system for capturing arbitrary objects from
multiple viewpoints. During the course of the project, the larger than anticipated weight of the
system requires the VGD camera to be tripod mounted.

{MOREEEEEEEEEEE........ }
The following are Dr. Tumey’s notes, written to himself,
which he intended to use in completing this section.

Provide background on VGD. Why do we need
calibration? How does it fit in?

The camera calibration problem can be summarized as follows, similarly to Fischler & Bolles’
description of the location determination problem [FiB81]:

Given a set of "landmarks" ("control points"), whose locations are
known in some world coordinate frame, determine the intrinsic and
extrinsic parameters that transform each world point into an image
point in the image coordinate frame.
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{MOREEEEEEEEEEE...... . )
The following are Dr. Turney’s notes, written to himself,
which he intended to use in completing this section.

Lots of people tackled this problem. List of major pitfalls. Just illustrative examples of each
past methods.

In order to simplfy the camera calibration problem, previous researchers often maes use of
various simplifications [Abidi & Chandra90] [Tsai87] (Faugauras & Toscani87] [Grosky &
Tamburino90] [Fischler & Bolles81 ] [Ganapathy84] [Liu, Huang & Faugaras90] {Strat84)
[Gremban, Thorpe & Kanade88], [ Puger & Skordas90a-b] [Strat84 ]. There are a number of
simplifications that generally lead to inaccuracies and imprecision in the final solution. First, R
is linearized without maintaining its orthonormality. Second, no camera model “intrinsic
parameters) is used. Third, intrinsic and extrinsic parameters are decoupled in their recovery.
Fourth, special geomertic considerations are used in linearizing the equations, or providing
restricted analytical closed-form solutions. F ifth, linear iterative methods are usec’ after the
problem is linearized with respect to incremental changes in the parameters. Sixth,R and T are
decoupled and recovered independently.

[Chang & Liang89]’s approach considers time-varying camera parameters but it is based on
(Tsai87] s formulation. ({Kumar89] provides a similar critical examination. )

Decentering effect of the optical axis can be factored into R, but this would violate the
orthonormality (?) of R. F ortunately, it has minimal effect.

Our algorithm does not make these assumptions. We do not need to be hand-guided [Faig75].
We maintain all constraints. We use non-linear optimization. It provides for simple single plane
calibration, using coplanar sample points.

1.1 Overview
The following are Dr. Turney’s notes, written to himself,
which he intended to use in completing this section.Lots
of people tackled this problem.
Bearing in mind the above pitfalls...
Overall VGD approach (algorithm).
MOREEEEEEEEEEE........

This memo is divided into four major sections. Section 1.1 describes the VGD system
requirements imposed on the VGD camera system in order to provide accurate 3D metrology of
arbitrary objects. Section 1.2 outlines the general camera calibration problem and the
mathematical formulation we have adopted. Section 1 3 summaries the pitfalls of previous
approaches, the lessons on which we build the basis of our approach. Section 1.4 describes the
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three new methods that we have implemented (is implementing?). Preliminary result with
synthetic data are included (?). Section 1.5 discusses the related problem of viewpoint
determination necessary for correlating the data from multiple arbitrary views. Scction 1.6
provides a list of the cited references.

1.2 KMS Solution

MOREEEEEEEEEEE........
The following are Dr. Turney’s notes, written to himself,
which he intended to use in completing this section.Lots
of people tackled this problem.

Describe VGD setup with lines and user-assisted correspondencelline fitting/edge detection. The
overall strategy for camera calibration is to non-linearly optimize all the extrinsic and intrinsic
parameters of each individual camera.

Calibrate camera_1, calibrate camera_2, calibrate stereo baseline, calibrate projector (PHASOR
Cam), related to viewpoints determination later; first two are monocular camera calibration (does
not have to be coplanar data points)

Once the cameras (and projection grating) are calibrated as such, stereopsis is used to Jetermine
the base line of the VGD camera system. (Note cameras must be linearized as well. Other
details such as distance between optical and camera center.)

The steps are 1) set up camera and calibration card (describe card); 2) image card and extract
lines with user assistance in defining 2 points per line; 3) fit line to endpoints and sample "line”
perpendicular to fit (better than edge detection [Canny87?] and then line fitting -- less fi-ting error
to consider); 4) do non-linear optimization as described below to retrieve all extrinsic and
intrinsic parameters simultaneously.

1.3 Calibration Model

Our calibration model consists of the intrinsic parameters, extrinsic parameters, camera model,
optimization scheme...

MOREEEEEEEEEEE........
1.3.1 Intrinsic Parameters

A set of physical intrinsic parameters form our sensor (camera) model. They are the focal length
f, image frame center (C,, C,), horizontal scale factor s,, and radial lens distortion factor x. This
simplified model of an imaging system is based on the pin-hole camera model with focal length
f, while including effects from sensor sampling and lens distortion. A description cf the lens
optics according to thick-lens laws instead is given in [Sha89].
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Both the image frame center and the horizontal scale factor are side-effects of the impe;fection in
a camera system’s hardware timing for scanning and digitization. The horizontal scale factor s,
is actually equal to

s.=f1f

where
f.: pixel clock frequency of the camera
f+ sampling frequency of the A/D-converter.

However, recovery of these frequencies [LeT88] is impractical for most applications. A rough
estimate for s, is

s,=N_,/N,

where
N_: number of sensor elements in X (scan-line) direction
N,: number of pixels in a sampled scan-line

But [LeT88] reported at least 4% difference between the above two methods. In our unified
technique, we treat s, as just another optimization parameter and recover it more accurazely.

As for lens disfonion, [Bro65] showed that the radial and decentering distortion of wcrld points
(x, y) into image points (x’, y') can be corrected by using the equations

X =x+xKr+Kr+Kre+ )+ [P+ 202+ 2Px,y )1 + Pr: + .. ]
Y =y+yKr+Kr+Kr+ )+ [2Pxy, + P(ri+ 2 ][l + Py + ..}

where
X, =X—x,
In=Y—),
r=[{x—-xy+Qy—yrFm"
Yy X,: coordinates of principal point
K.: coefficients of radial distortion
P, coefficients of decentering distortion

[Bro71] pointed out that radial lens distortion is the predominant effect, and that the zangential
and asymmetric components of decentering can be ignored. Thus, lens distortion can be
approximated as a simple second-order effect in terms of 7. [Tsa87] parameterized this as the
radial alignment constraint (RAC) involving only one coefficient .

1.3.2 Extrinsic Parameters

The extrinsic parameters define the location determination problem, ie. determining the
transformation of each point from the world coordinate frame to the image frame given known
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intrinsic parameters. They are the six orientation parameters between the optical origin and the
world origin. The rotation parameters can be represented in various ways, including: an
orthonormal rotation matrix R of nine elements, three Euler angles (8, ¢, y), or a quarternion q.
The translation parameters are represented as a vector T.

We elected to use the quarternion representation ¢ for rotations. It is easier to enforce the unit
magnitude of vector ¢ than the orthonormality of matrix R. Moreover, the rotation sirgularities
are located far apart at the dipoles of quarternion space, rather than being bunched together in

Euler angle space clusters. A quarternion defines the direction w and the magnitude 6 of a
desired rotation.

q = cos(08/2) + sin(0/2)w
This formula is used to construct the corresponding quarternion for an Euler angles triplet, where
w can be the inidividual unit vectors at the world origin or the optical center. q is a3 complex
number with three imaginary parts, composed of a unit vector w and the reals a, B, vy, o
g=a+ puw, + yu, + dw,
Its conjugate ¢" is
¢ =a-pw ~-yw — dw,
and its magnitude is
lgl=a2+ B2+ y2 + &

The usual properties of real and complex numbers are preserved with quarternions except for
commutativity of multiplication [Hor87]. Suppose we let

n=n?=nz?=-|
n.lny = nx ’ nyn: = nx 4 nxnx = ny
na,=-n ., A, =-n, na=-n

Then if

p=p0+p:nx+pyny+pﬂl
q=q0+q:n:+q)),y+qtnx
r=r,+rn, +rn +rna,

we get the quarternion vector product

rq=(rgo—rq.—r4,—rq,) +n(rq. +rg, +rg,—rgq,)
+ n,(roq, —rg.+rq,+rgq,) +n(rqg, + rq,—rq.+rgq,)

We note that
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rq = qr
The quartemion for a 3D point (®., p,» P.) is constructed as
p=0+pn +pn +pn

where (n,, n, n,) are the unit vectors along the xyz axes, respectively. The application of a
rotation q to point p is then

P’ =qpq
Note that —¢ gives the same rotation
P9’ = —~qp—’
Moreover, the common rotation matrix R that takes p into p’
@ .p/ P =R (. p, )

can be expressed in terms of unit quarternion ¢

9’ +q9:—q2—q; 2q.9,—q.4.) 2q.q. + 94,
R = 2(q,9. + 9,9, 9 —q2+q7—q? 2(9,9, - 9,9.)
2(94. ~ 9.4,) 294, + 94.) 9% —q:—q7+q;

[Hor87] proposed two constructions of the unit quarternion for an infinitesimal rotation §w.
[PeW83] derived formulae for the magnitude, dot, cross, and scalar and vector triple products in
quarternion space, that is, by considering only the imagainary parts of quarternions.

1.4 Camera Model

The basic geometry of the camera model is shown in Fig. 2. The imaging process is subdivided
into four steps [Tsa87):

1) Rigid body transformation from & Yo 2)t0(x, y, 2)
kyz)'=R(x,y,z)"+T
2) Perspective projection with pin-hole camera geometry

X.=fx/z
Y=fy/:

3) Radial lens distortion with second-order polynomial approximation
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X=X,=X,(1+kr)
Y=Y,=Y, (1+kr)

with
rr=X1+72

4) Digitization of real image coordinate (X, Y) to computer image (frame buffer)
coordinate (X, Y))

X,=d'X+C,
Y,=dX +C,
with
d' =sd,
where

(X, ¥.» 2,,): 3D coordinates of point P in 3D world corrdinate system

(x, ¥, 2): 3D coordinates of point P in 3D camera corrdinate system

(X, Y): image coordinate system

X, ) or (X,, Y,): distorted 2D image coordinates of P

(X, Y,). digitized 2D image (frame buffer) coordinates of (X, Y)

(X,, Y.): ideal undistorted 2D image coordinates of P

(C,, C,): image frame center

(d., d,): distance between adjacent sensor elements in X and Y direction, respectively
(d.’, d,): distance between frame buffer pixels in X and Y direction, respectively
s.: horizontal scale factor

f: focal length

x: radial lens distortion factor

d, and d, are available from the camera and frame grabber specifications, as are N, and N, for an
initial rough estimate of s,, We can assume zero distortion (x = 0) and unit focal length (f = 1)
at the beginning of the calibration procedure.
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Figure 2. Pin-Hole Camera Geometry with Radial Lens Distortion

1.4.1 Monocular Camera Calibration

In order to account for the lens distortion, we need a relationship between the ideal anci distorted
image planes. According to the radial alignment constraint,

X/Y,=X1Y, » X,/Y,-X,/Y.=0

Using the radial distortion equations in our camera model and expressing Y, in terms of X, this
becomes

KX,1+Y/X)X:-X +X,=0
We can solve this equation with the quadratic formula
x=(=bt J(¥* —4ac))/ 2a
Moreover, using L’Hopital’s Rule on the quadratic solutions, as /im k » 0, we have X, = X, and
Y, =Y, for the negative roots only. Thus, the projection of a distorted point (X,, Y,) onto the ideal

plane (X,, Y,) is given by the equations

X =X[{1-yd —4xXz + Y2)) / 2k(X2 + Y )]
Y=Y [{1 -yl —4xX7 + Y)) / 2x(X + Y .2)]

and (X, Y,) is recovered from (X, Y,) using the digitization equations in our camera moclel
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Xd = (Xf - Cx) /Sxdx
Y,=(¥,-C)/d,

For the correct intrinsic and extrinsic parameters, a 3D line / in the camera coordinate system
should lie on the projection plane M formed by its line image L in the ideal image plane (X,, Y,)
(Fig. 3a). In other words, the perpendicular distance | N | between / and M should be ze ro, where
N is the surface normal of M. Each projection ray Q passes through an ideal image point (X,,Y)
at focal length f. So we have

Q@ =sU

where U is the unit vector along the direction (X,, Y., f)T. The unit normal is constructed as

Nu'= Uix Ui+l

Figure 3. Projection Plane Constraint.

[LHF90] proposed to solve the location determination problem by minimizing the dot product
between d, the direction vector of [, and N (Fig. 4a) using the constraint

N-d=0
However, the paramterization of / along its direction d generates a free-floating 3D vector that is
not anchored at the optical center of the camera coordinate system. This is undesirable since the

objective function can be minimized by merely bringing / to be parallel to M. In this case, both
vectors N and d would be perpendicular but the perpendicular distance would be non-zero.

Ned=0!=INI=0

Thus, / may not lie on M but floats above or below it instead.
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On the other hand, [Kum89] used a ray vector P going through the optical center to each 3D data
point p (Fig. 4b). Since P can only be perpendicular to N when it lies on the plane M, we have

N:P=0 = INI=0
where
P=Rp +T
so that the constraint is then

E:Z,(N,.-((Rp,,,+T)/lRp,,+T|) }2

where each image line L, generates its corresponding normal N,. The denominator is used to
scale down the skewing effects of points that are farther away from the optical center, points that
erroneously tend to contribute heavily to the rotation in proportion to their larger distances from
the optical center.

Figure 4.  (a) Constraint used by [LHF90] (left) (b) Constraint used by [Kum&9] (right)

In our case for camera calibration, we do not initially know the intrinsic parameters. Therefore, [
would probably be a curve instead of a line in the ideal image plane and M would ini-ially be a
projection surface instead of a plane in 3D space. With radial distortion, the projection rays Q,
facet the projection surface M into multiple approximating planes M, (Fig. 5). The extrinsic
parameters basically control the rays P, and shift them around in 3D space as the searct. proceeds
in the multidimensional parameter space. The intrinsic parameters can be considered as warping
the shape of M and shifting the projection rays Q, and the facet normals N, As we ge: closer to
recovering the camera model, this warped projection plane M flattens out correctly.
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Since the projection surface M is faceted by the rays Q,, we can recover the intrinsic parameters
independently using the surface normals N, of the facets M. When M is flattened out, the
normals N, would all be parallel, irrespective of the extrinsic parameters, since they are all
anchored at the optical center. The cross product of two vectors is a measure of their parallelism
Ix,;xx,I=1x,11x,1sin8
Each normal N, is constructed from pairs of rays (U, U,,,). With the associativity of cross
products in mind, the projection facets constraint (PFC) for the intrinsic correction is constructed
as

Eppe=2,(INxN,,|}?

To avoid the ill-conditioning introduced by the square root function used in computing the
magnitude, we eliminate it by implementing the following equivalent objective function instead

EPF'C = Zl ( un‘. ioz.:: + ud. i4>2.yz + ur’. i*2, '2 ]
where

u,,=Nx N, = (02, 4, ity s Ui y)

Figure 5. Distortion Correction using the Projection Facets Constraint.

Altemately, both intrinsic and extrinsic parameters can be recovered simultaneously. A plane
PPO can be fitted to the 3D data points and the optical center (Fig. 6a). Since both :riangular
planes PPO and M meets at the optical center, their respective normals PPN and N would be
parallel only when PPO lies on M. Using the cross product measure of parallelism and
incorporating the intrinsic correction (E,,.), the Plane-Plane (PP) constraint is constructzd as
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E,=2, (INxN., |+IN,x PPN, }:

where
PPN, =P.xP, /IPxP,,|
Similarly to E,,., we implemented E,, in terms of the sum of the squared magnitude conponents.
For the PP and PFC constraints, we must make sure that the 3D data points p_, and p_,,, are
spaced sufficiently apart. Otherwise, when they are far from the camera with large z v alues, the
vectors P, and P,,, may effectively be parallel and the cross product value for their surface normal
would be ill-conditioned.
Instead of considering the facets M,, we can use the projection rays Q,. Q, can only be
perpendicular to PPN when it lies on the plane PPO (Fig. 6b). Using the dot product measure of
perpendicularity, the Plane-Vector constraint (PV) is constructed as
E, = Z,{ PPN,-U, )
In the most general case, we deal directly with the individual 3D and image data points. The
Vector-Vector (VV) constraint is constructed using the perpendicular distance between / and
each @, (Fig. 6¢). The line / is parameterized between points P, and P, along its direc-ion d and
its endpoint P,.
I=rd +P,
The direction of / is
d=P,/IP,I-P,/IP,]
We also know
Q=sU
Using vector analysis, the perpendicular distance between / and Q is
INI=[-P,dU]/1dx U]

However, we do not merely want to minimize the distance between arbitrary points on both line,
but the distance between the endpoints of N, that is, p., and Q,. Thus, we need to minirize r and
s in order to get the correct minima for V1.
Correct above to talk about scaling for skewing effects of farther away points.

vl is ambiguous and can be any vector for t-parameterization p = v1 +t v2 (ie. r or s)

MOREEEEEEEEEEE........
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Figure 6.  (a) PP Constraint (top-left) (b) PV Constraint (top-right), (¢) VV Constraint
(bottom)

In optimizing both the intrinsic and extrinsic parameters simultaneously, it is conceivable that the
objective function can be satisfied by a feasible configuration of projection plane warping and
ray vectors transformation; but not if sufficient 3D data points are provided with a calibration
card such as the one shown in Fig. 6. The card has multiple sets of non-parallel intersecting lines
so as to properly constrain all the degrees of optimization freedom. Moreover, it eliminates the
position ambiguity of an image line / on the projection plane M.
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Figure 7. Calibration Pattern

The rotation matrix R is expressed as a function of quarternion g. In order to maintain the
orthonormality of R, the constraint that ¢ must be an unit vector can be expressed as

lgl-1=0

{Hor88] proposed two forms of unit quarternion to iteratively ensure that ¢ is an unit vector when
constructing R. However, R "will still tend to depart somewhat from orthonormality due to
numerical inaccuracies ... if many iterations are required.” This is due to the incremental effects
on R when adjusting the rotation through applying

Rt = Qn R~

To circumvent these problems, we use the standard Levenberg-Marquardt method for non-linear
optimization [PFT88][Fle87]. Each estimate R- is independently evaluated and the unit
quarternion constraint can be added in as an extra term in our objective function. One possibility
is to add the constraint in as a Lagrange-multiplier (eg. [Hor88]). To minimize p(x), subject to
the constraints u(x) = 0, this method reduces the problem to finding a stationary point of the
function

p(x, A) = p(x) + ATu(x)

However, this stationary point is neither a minimum or a maximum, so the typical mir.imization
techniques will not work well [DaB74].

MOREEEEEEEEEEE........
The following are Dr. Turney’s notes, written to himself,
which he intended to use in completing this section.Lots
of people tackled this problem.

how to express unit length as a vector constraint?

Instead, we enforce the constraint with a penalty function.... or barrier function
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p(x, A) = p(x) + k~ uT(x) u(x)

We iterate over k until q is close to an unit vector.
0 <= k(i) <=1 for k(i+1) = k(i) + 0.1; or k=10,100,1000,...

1.4.2 Stereo Camera Calibration

The stereo camera calibration problem is very similar to the monocular case. We can use the
same non-linear optimization idea to recover the relative orientation [Hor88] between the
cameras. Alternately, since we have recovered the extrinsic parameters for each cariera, then
with some user assistance in matching corresponding landmarks in the two image frames, we can
simply modify the R’s and T’s from monocular calibration as our solution.

1.4.3 Projection Camera Calibration
(see section by PGG2) -{This section was never written )
1.4.4 Viewpoint Registration

There are two approaches to viewpoint registration. First, we can use a tracking device such as
the Polhemus 3DSPACE Tracker to monitior the position of the VGD camera system at the
multiple viewpoints. Second, as in the stereo case, a geometric solution can be generated after
some assistance by the user in solving the correspondence problem between the image jrames.

1.5 Experimental Results

The following are Dr. Tumey’s notes, written to himself,
which he intended to use in completing this section.Lots
of people tackled this problem.

show results

compare synthetic data with real data!
Provide analysis?

Minimum number of lines consideration. Contrast {Kumar89] and [Horn87 :book] a-guments.
{Tsai87] has ad hoc number of 60 sample points. Statistical considerations? Error analysis.
Measurement analysis. Derive parameters from one card, and project expected lires onto a
different card. No sub-pixel accuracy. In sythetic case, different set of data. Caliorrate to a
card. Different R and T, and try to recover that again. Show simulation error analysis,
accuracy, and precision. Comparison with others?
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Section |
Detailed VGD Project Plans

On the following pages, the detailed flow of the work performed on the VGD project is
schematically represented in MACproject format. Since the contract task numbers I - VI
incorporate multiple elements of the task boxes shown in the activity breakdown, following the
activity breakdown drawings are included drawings showing how the project tasks map onto the
VGD sub-task matrix.
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Section J
February 1991 Progress Review Viewgraphs

The following pages contain the viewgraphs which were presented at KMS’s Februar showing
that a functional VGD system could be delivered to NASA given the hours remaining if

a) the contract was novated to KMS Advanced Products, Inc. and
b) the projected 1991 rates did not increase further.

However, he did emphasize that certain convenience features which KMS wanted to incorporate
in the system would have to be omitted because KMS’s 1991 projected rates (assuming novation
occured) indicated that there were too few hours remaining on the project.

The primary feature in which KMS would be forced to deliver less functionality than we would
like to was in the area of the user interface for VGD. Given the remaining budget, only a
command line interface could be provided. However, all proposed functionality would be
provided.

It should also be noted that as available hours decreased, the number of hour available for
documenting the system had decreased.

At the end of the January review, Dr. Gottschalk and Amold Chiu continued to work on various
VGD tasks.
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Section K
May 1991 Project Review Viewgraphs

From January through March Dr. Gottschalk and Armold Chiu worked feverously to try and
accomplish the required tasks within the available labor budget. However at the end of March,
KMS had suspended all work on the VGD contract because it was determined that contract funds
were overspent if the contract was not novated from KMS Fusion to KMS Advanced Products.

The reason for this is that in order to try and shield the R&D contracts from the huge labor
overhead rates associated with closing down the DOE contract (in excess of several thousand
percent), the R&D staff working on the VGD project had been transferred from KMS Fusion,
Inc. to KMS Advanced Products, Inc. Asa consequence, if the contract stayed in KMS Fusion,
Inc. an additional intercompany G&A cross charge would have to be applied.

Shortly thereafter the suspension of work on VGD, Amold Chiu terminated his employment with
KMS on one day’s notice. There was no time to transfer his work to Dr. Gottschalk.

In May, KMS held a project status review for VGD. The following pages contain the
viewgraphs presented by Dr. Gottschalk at that status review. Please note that the project
activity charts he presented show that by mid-May nearly all project tasks have been completed
with the notible exceptions of integrating the software components into the final system and of
documenting what had been done. At this point, Dr. Gottschalk was the only person
knowledgeable as to the status of the project and what needed to be done.
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Section L
Delivered VGD Hardware

The hardware delivered with VGD includes:

1 Color VAXstation 3520 with 16 mbytes of memory, keyboard, mouse,
manuals, cables, etc.
Assorted cables and power cords
Expansion cabinet with cables.
Analogic/CDA Array Processor
1 SURPHACE camera assembly including
2 miniature cameras and power supplies
1 illumination system
1 illumination slides
2 Data translation digitizer boards
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Section M
Delivered VGD Software

The software developed on the VGD contract is on the directory DKAO:[VGD] on the VGD
system. To access this software, the system manager for the system should log into t1e system
account (SYSTEM) with the password VGDSYS. The system password should then bz changed
as required by site security policy.

The system is delivered with the following software licenses and distribution media.

1 VAX/VMS Operating System V5.4-2 License
(VMS V5.4-2 YMSU2054, LATU2054 on TKS0)
DVNETEND License for a VAXstation 3540
PHIGS Runtime License for a VAXstation 3540
VAXcluster License for a VAXstation 3540
DW-Motiv License for a VAXstation 3540
CDA Array processor software and library
(MicroMSP Driver and Libraries V3.1 on TK50)
(MicroMSP manual supplied)
| Data Translation digitizer software driver
(SP00231 V1.02 DT-IRIS tape on TK50)
(Manual supplied)

el il

The VGD software is on directory DKAO:[VGD]. Please note that the fil:s on the
[.MAC_FILES] directory structure are in Pacer_Link directory structure format wvhich we
believe to be compatible with the format used by either PacerShare, Alisa/Macintosa S/W, or
DEC'’s Pathworks.

The files contained on this directory structure include:

Directory DKAQ: [VGD]

CHIU.DIR;1 GOTTSCHALK.DIR;1 MAC FILES.DIR;1
Total of 3 files.

Directory DKAO: [VGD.CHIU)

CALIB.DIR;1 HEAD.DIR;1 TEAPOT.DIR;1
Total of 3 files,

Directory DKAQ: [VGD.CHIU.CALIB]

CALIB.C;31 CALIB.C; 30 CALIB.EXE; 39 CALIB.JOU; 1
CALIB.OBJ; 39 CALIBl.C;2 CLINK.COM; 1 CMAKE .COM; 2
DNLS1.DOC; 1 DNLS1.FOR; 2 DNLS1.0BJ;1 DUM.LIS;13
DUM.LIS;12 MACH.FOR;1 MACH.OBJ; 1 TESTDNLS1.Z2;11
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L

TESTDNLS1.0BJ; 1 XERROR.C; 2 XERROR.OBJ; 1
Total of 19 files.
Directory DKAO: [VGD.CHIU.HEAD]

DSP.C:;5 DSP.EXE; 2 DSP.OBJ; 3 MESH.DAT;1
PIC.DAT;1 README. ;1

Total of 6 files.

Directory DKAO: [VGD.CHIU.TEAPOT]

BLEND.C;1 BLEND_VECTOR.C;1 BLEND_VECTOR.OBJ;1 COMPUTE VIEW.C;1
COMPUTE_VIEW.OBJ;1 CURVE.C;1 DISPLAY_CURVE.C;1
DISPLAY_CURVE.OBJ;1

DISPLAY_PATCH.C;1  DISPLAY PATCH.OBJ;1 DUM.LIS;1 GLOBAL.H;1
INIT.C;2 INIT.C;1 INIT.OBJ; 1 MAKEFILE.MMS; 3
MAKEFILE.MMS;2 PATCH.C;1 PATCH.DAT; 2 PATCH.DAT; 1
ROTATE_3.C;1 ROTATE_3.0BJ; 1 SIM STER.H;1 SIM_STEREO.C;2
SIM_STEREO.C;1 SIM_STEREO.EXE; 2 SIM STEREO.H;1 SIM_STEREO.OBJ;2
SIM_STEREO_GLOB.H;1 SIM STEREO PROTO.H;1 SURFACE.DAT; 1
S_ERROR.C;1 S_ERROR.OBJ; 1 TEAPOT.DAT; 1 TEAPOT.EXE; 1
TRANSLATE_3.C;1 TRANSLATE_3.0BJ;1  TRANS 3.C;1 VERTEX.DAT; 2
VERTEX.DAT; 1 VIEW.C;1 VE_TRANS.C;1 VP_TRANSFORM.C;1

VP_TRANSFORM.OBJ; 1
Total of 44 files,

Directory DKAO: [VGD.GOTTSCHALK]

ACQUIRE.DIR;1 CALIBRATION.DIR;1 DT.DIR;1 LINES.DIR;1
PHASE.DIR;1 QIlFIGS.DIR;1 QUICKIES.DIR;1 QUICKRANGE.DIR;1
RANGEDATA.DIR;1 RAWPHASE .DIR;1 REPORT GRAPHICS.DIR;1
SINESLIDE.DIR;1 SLIDEDATA.DIR;1

Total of 13 files.
Directory DKAQ: (VGD .GOTTSCHALK.ACQUIRE)

ACQDISPLAYIMAGE .C;4 ACQDOACQUIRECOMMAN D.C; 24
ACQDOACQUIRECOMMAND .0BJ; 12

ACQDOACQUIRECOMMAND .OBJ; 11 ACQDOCENTERCOMMAND . C; 3
ACQDOCENTERCOMMAND .OBJ; 4 ACQDOCENTERCOMMAND .OBJ; 3
ACQDONUMBERTOAVERAGECOMMAND .C; 8 ACQDONUMBERTOAVERAGECOMMAND .OB J; 3
ACQDONUMBERTOAVERAGECOMMAND . OBJ; 2 ACQDOSAVECOMMAND .C; 17

ACQDOSAVECOMMAND .OBJ; 6 ACQDOSAVECOMMAND .0OBJ; S
ACQDOSETFRAMEGRABBERCOMMAND .C; 3 ACQDOSETFRAMEGRABBERCOMMAND .OBJ; 5
ACQDOSETFRAMEGRABBERCOMMAND.OBJ; 4 ACQDOSWCCOMMAND.C; 8
ACQDOSWCCOMMAND .OBJ; 3

ACQDOSWCCOMMAND .OBUJ; 2 ACQDOSWSCOMMAND.C; 8
ACQDOSWSCOMMAND .OBJ; 3

ACQDOSWSCOMMAND .OBJ; 2 ACQERROR.C;2 ACQERROR.CBJ; 2
ACQERROR.OBUJ; 1 ACQHANDLECOMMANTD . C; 9

ACQHANDLECOMMAND .OBJ; 3
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ACQHANDLECOMMAND .OBJ; 2 ACQUIRE.C;22 ACQUIRE.EXE; 3
ACQUIRE.EXE; 2 ACQUIRE.OBJ: S5 ACQUIRE.OBJ; 4 ACQUIRE.OPTI; 11
ACQUIRB_PROTOS.H;lB ACQUIRE_PROTOS.H;17 ACQUPDATEPADSIZE.C;10
ACQUPDATEPADSIZE.OBJ; 3 ACQUPDATEPADSIZE.OBJ; 2

DO.COM; 5 MAKEFILE. ;55 TAPE.TIFF;1

Total of 42 files.

Directory DKAO:[VGD.GOTTSCHALK.CALIBRATION]

GEO.DIR;1 PHOTO.DIR;1

Total of 2 files.

Directory DKAO:[VGD.GOTTSCHALK.CALIBRATION.GEO]

GEO.EXE;11 GEO.H; 47 GEO.OPT;13
LSE_ERROR.LOG;1

GEOTEST.DIR;1

Total of 5 files.

Directory DKAO:[VGD.GOTTSCHALK.CALIBRATION.GEO.GEOTEST]

ALL.FREE: 2 ALL.FREE;1 CO.CARD; 2 CALO.CAM; 1
CALl1.CAM:; 3 CALl1.CAM; 2 CALl1.CaM;1 FO.FREE; 11
HEXAGON.CARD; 1 HEXAGON.TIFF;1 I0.CaM; 21 I0.CAM; 20
I0.CaM;19 I0.CAM; 18 I0.CaM;17 LINES.TIFF;1
LINESA.TIFF;:1 LINESC.TIFF;1 LS0.LSP;8 MO .CAM; 82

MO .CAM:; 81 MO.CaM; 80 MO.CAM; 79 MO .CAM; 78
MO.CaM; 77 MO.CAM; 76 MO.CAM: 75 MO.CAM; 74
MO.CaM; 73 MO.CAM; 72 MO.CaM: 71 00.0PR; 26
ORIENT.FREE;1 ROT.FREE; 2 ROT.FREE; 1 S0.CAM; 9
SYNTH.CAM;13 TR.FREE;1

Total of 38 files.

Directory DKAO:[VGD.GOTTSCHALK.CALIBRATION.PHOTO]

BO.TIFF;1 BORDER.TIFF;1 CO.TIFF:1 DO.TIFF;1
EO.TIFF:1 FO.TIFF;1 HO.TIFFr;1 IO.TIFF;1
JO.TIFF;1 KO.TIFF;1 LO.TIFF;1 MO.TIFF;1
Total of 12 files.

Directory DKAQ: [VGD.GOTTSCHALK.DT]

DT.H;16 DTERRORDETECT.C;1 DTERRORDETECT.OBJ;1 DTGRABIMAGE.C; 34

DTGRABIMAGE .OBJ; 7 DTINITIALIZ2E.C;28 DTINITIALIZE.OBJ;1 DTLIVEVIDED.C;6
DTLIVEVIDEO.OBJ; 2 MAKEFILE.;7

Total of 10 files.
Directory DKAO:[VGD.GOTTSCHALK.LINES]
LINES.OBJ; 29

LINES.C;50 LINES.C; 49 LINES.EXE;2
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LINES.OPT; 31 MAKEFILE. ;23

Total of 6 files.

Directory DKAO: [VGD.GOTTSCHALK.PHASE]
PO.PHPARAMS; 40 PH.H; 22 PH.OPT; 11
Total of 3 files.

Directory DKAOQ: [VGD.GOTTSCHALK.Q1FIGS]

AMBIG_ELLIPSE.DRW;1 BLOCK_W_VECTORS .ESP: 2
SPHERE_W_VECTORS.PSF;3

STORS_PROP_II_2.DRW;1 STORS_PROP_II_3.DRW;1
STORS_PROP_II_4.DRW;1 STORS_PROP_II_5.DRW;1
STORS_PROP_II_6.DRW;1 VOLKSWAGON.PS; 1

Total of 9 files,.

Directory DKAQ: [VGD.GOTTSCHALK.QUICKIES]

CREATE_AND_WRITE IMAGE.FOR;28 CREATE_AND_WRITE_IMAGE.OBJ;1
IMAGE_PROTO.H; 8 MAKEFILE, ;S READIMAGEFILE.C:; 4
READIMAGEFILE.OBJ; 1

SUBIMG.C;11 SUBIMG.DIA; 4 SUBIMG.EXE:; 8 SUBIMG.JNL;1
SUBIMG.OBJ; 2 WRITEIMAGEFILE.C;21 WRITEIMAGEFILE.OBJ;1

Total of 13 files,

Directory DKAOQ: [VGD.GOTTSCHALK.QUICKRANGE]

CAL.CAaM;1 CAL.PROJ; 11 MAKEFILE.;8 QR.C; 46
QR.EXE; 27 QR.H;10 QR.OBJ; 27 QR.OPT; 6
QRREADPROJECTORPARAMETERS .C; 11 QRREADPROJECTORPARAMETERS .OBJ; 11
QRREADSHORTIMAGE.C;5 QRREADSHORTIMAGE.OBJ; 6
QRWRITEDELTAGRAPH.C; 2 QRWRITEDELTAGRAPH.OBJ;S
QRWRITESWIVELPOLYMESH.C;23 QRWRITESWIVELPOLYMESH.OBJ; 21
T™P.C;1

Total of 17 files.

Directory DKAO:[VGD.GOTTSCHALK.RANGEDATA]
RO.DIR;1 R1.DIR;1

Total of 2 files.

Directory DKAQ: [VGD.GOTTSCHALK.RANGEDATA.RO]

A.CAaM;1 A.IMG;1 A.PROJ;1 A.TRUE;1
AVIEW.TIFF;1 A 000.TIFF;1 A _090.TIFF;1 A 180.TIFF;1

Total of 8 files.
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Directory DKAO: [VGD.GOTTSCHALK.RANGEDATA.R1]

A.TIFF;1 COH_000.TIFF;1 COH_090.TIFF;1 COH_180.TIFF;1
COL_000.TIFF;1 COL_090.TIFF;1 COL_180.TIFF;1 C1H_000.TIFF;1
C1H_090.TIFF;1 ClH_180.TIFF;1 C1L_000.TIFF;1 C1L_090.TIFF;1
ClL_180.TIFF;1 CAL.CAM;1 CAL.PROJ; 16 COKEOH_000.TIFF;1

COKEOH_090.TIFF;1 COKEQOH_180.TIFF;1 COKEOL_000.TIFF;1 COKEOL_090.TIFF;1
COKEOL_180.TIFF;1 PO.PHPARAMS; 41

Total of 22 files.

Directory DKAQ: [VGD.GOTTSCHALK.RAWPHASE ]

MAKEFILE.;17 PS000.PSDAT; 1 PS090.PSDAT; 1 PS180.PSDAT;1
PSIMAGES_TO_RAWPHASE.C;1 RAWPHASE_$COMPUTE_PHASE.C; 20
RAWPHASE_$COMPUTE_PHASE.OBJ; 14 RAWPHASE_$PROTOS.H; 2
SYNTH_RAWPHASE.DIR;1 TESTRAWPHASE.DIR;1

Total of 10 files,

Directory DKAO:[VGD.GOTTSCHALK.RAWPHASE.SYNTH_RAWPHASE]

I.SYNTHDAT; 9 MAKEFILE. ;53 SYNTH_RAWPHASE_$MAIN.C;8
SYNTH_RAWPHASE_$MAIN.EXE;2 SYNTH_RAWPHASE_$MAIN.OBJ;2
SYNTH_RAWPHASE_$PROTOS.H;1 SYNTH_RAWPHASE_$READ_INPUT DATA.C;7

SYNTH_RAWPHASE_$READ INPUT_DATA.OBJ;2  SYNTH RAWPHASE_SWRITE_DATA.C;11
SYNTH_RAWPHASE_$WRITE_DATA.OBJ; 6

Total of 10 files.

Directory DKAO: [VGD.GOTTSCHALK.RAWPHASE . TESTRAWPHASE ]

B00O0.PSDAT;1 BO90.PSDAT;1 B180.PSDAT;1 FC.FCDAT; 3
IDL.PS;6 IDL.PS;5 IDL.PS; 4 MAKEFILE.; 3
PS000.PSDAT; 2 PS090.PSDAT; 2 PS180.PSDAT; 2 R.RDAT; 2

TESTRAWPHASE .EXE;: 25 'fESerAVﬂPH)\SE__SC(DMP!JTE__PHJ\SE.()BJ7 11
TESTRAWPHASE_SMAIN.OBJ;?

TESTRAWPHASE_$PROTOS.H;4 TESTRAWPHASE_SREAD_DATA.OBJ;1
TESTRAWPHASE_$READ_FCOEFFS.OBJ;1 TESTRAWPHASE_SWRITB_PHASE_DATA.OBJ;1
Total of 19 files,

Directory DKAO:[VGD.GOTTSCHALK.REPORT_GRAPHICS]

REALVIEW_CONFIG.DRW;3 REALVIEW CONFIG.DRW;2
VGD_SURPH.DRW; 4 VGD_SURPH.DRW; 3 VGD_SURPH.DRW; 2 VGD_SURPH.DRW; 1

Total of 6 files.
Directory DKAO:[VGD.GOTTSCHALK.SINESLIDE]

RAMP .DIR;1 TRAPIXINIT.C;2 TRAPIXINIT.MMS;3 TRAPIXRAMP.C; 13
TRAPIXRAMP .MMS; 3 TRAPIXSINE.C; 30 TRAPIXSINE.MMS; 7

Total of 7 files,
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Directory DKAO:[VGD.GOTTSCHALK.SINESLIDE.RAMP]

MAKEFILE.; 6 RAMP.C; 9 RAMP .EXE; 2 RAMP .OBJ; 7

Total of 4 files.

Directory DKAO:[VGD.GOTTSCHALK.SLIDEDATA]

MATRIX.DIR;1 SINEPATTERNS.DIR:1

Total of 2 files.

Directory DKAO:[VGD.GOTTSCHALK.SLIDEDATA.MATRIX)

C13_100_60_1.HDR;1 C13_100_60_1.IMG;1 C13_100_60_2.HDR;1 C13_100_60 2.1IMG;1
C13_100_60_3.HDR;1 C13_100_60_3.1MG:1 C13_50_60_1.HDR;1 C13_50_60_1.1IMG;1
C13_50_60_2.HDR;1 C13_50_60_2.IMG;1 C13_50_60_3.HDR;1 Cl3_50_60_3.IMG;1
C3_100_60_1.HDR;1 C3_100_60_1.1MG;1 C3_100_60_2.HDR;1 C3_100_60_2.IMG:1
C3_100_60_3.HDR;1 03_100_60_3.IMG;1 C3_50_60_1.HDR;1 C3_50_60_1.1MG;1
C3_50_60_2.HDR;1 C3_50_60_2.IMG;1 C3_50_60_3.HDR;1 C3_50_60_3.1IMG;1
C7_100_60_1.HDR;1 C7_100_60_1.IMG;1 C7_100_60_2.HDR;1 C7_100_60_2.IMG;1
C7_50_60_1.HDR;1 C7_50_60_1.1IMG:1 C7_50_60_2.HDR;1 C7_50_60_2.1IMG:1
C7_50_60_3.HDR;1 C7_50_60_3.IMG;1 CS.DAT;1 IDL.PS; 3

IDL.PS; 2 IDL.PS;1 SINGLELINE.FRM; 1

Total of 39 files.

Directory DKAO:[VGD.GOTTSCHALK.SLIDEDATA.SINEPATTERNS]

HIGHOOO1.HDR;3 HIGH0001.IMG;3 IDL.PS:;10 LOWOOO1.HDR; 3
LOW0001.IMG: 3 MEDOQO1.HDR; 3 MEDO0OOO1.IMG;3 SP.FRM;1
SPHIGH.FRM; 1 SPLOW.FRM; 1 SPMED.FRM; 1

Total of 11 files.

Directory DKAO:[VGD.MAC_FILES]

ACQUIRESURFACES.;1 ACQUIRESURFACES.LOG: 1 AFP_RESOURZE.DIR;1
CAMERACALIBRATION.;1 CAMERACALIBRATION.LOG; 1
FABRICATECALIBRATE. ;1 SURFACEMERXGE . ;1
SURVEYLITERATURE. ;1

VGD.;1 VGD.1:1 VGD.2;1 VGD.LOG;1
VGDHARDDATES. ;1 VGDPLAN. ;1 VGDPROJLCT. ;1

VIBWPOINTDETERMINATION.;1
Total of 16 files.

Directory DKAO:[VGD.MAC_FILES.AIP_RESOURCE]

ACQUIRESURFACES. ;1 ACQUIRESURFACES.LOG; 1 AFP_INFOFILE.DIR;1
CAMERACALIBRATION. ;1 CAMERACALIBRATION.LOG; 1
FABRICATECALIBRATE.;1 FILEBACK.AFP;1 FILEINFO.AFP;1
SURFACEMERGE. ;1 SURVEYLITERATURE. ;1 VGD.;1 VGD.1;1

VGD.2:1 VGD.LOG; 1 VGDHARDDATES. ;1 VGDPLAN. ;1
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VGDPROJECT. ;1 VIEWPOINTDETERMINATION, ;1

Total of 18 files.

Directory DKAO:[VGD.MAC_FILES.AFP_RESOURCE.AFP_INFOFILE]

ACQUIRESURPFACES. ; 1 ACQUIRESURFACES .I OG ;1
CAMERACALIBRATION. ;1

CAMERACALIBRATION.LOG; 1 FABRICATECALIBRATE. ;1

SURFACEMERGE, ;1 SURVEYLITERATURE.;l VGD.:1 VGD.1;1

VGD.2;1 VGD.LOG;1 VGDHARDDATES. ;1 VGDPLAN. ;1
VGDPROJECT. ;1 VIEWPOINTDETERMINATION. ; 1

Total of 15 files.

Grand total of 33 directories, 438 files.
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Appendix A
Literature Review

The literature survey originally included in the first Quarterly report is included on the following
pages for completeness.




Appendix A

Review of 3-d Object Recognition Techniques

Work on 3-d object recognition was launched by the seminal work of Roberts
[Rob64]. Earlier work on object recognition dealt primarily with the recognition
of 2-d patterns in images. Unfortunately, 2-d object recognition problem is
fundamentally different from that of 3-d object recognition, consequently many
approaches that work well for 2-d cannot be extended to 3-d. Roberts’ work
addressed many of the key issues involved with 3-d recognition and, for a first
attempt, was remarkably complete. It will be enlightening to examine Roberts’
work in some detail later in this review. For now, we note that his method uses
a combination of viewpoint-invariant qualitative topological relations between
features and quantitative, viewpoint-dependent interfeature relations to select
possible models and determine their spatial pose relative to the viewer. It was
recognized that one of the weaknesses of Roberts’ algorithm was the low-level
feature extraction and grouping modules. Reasoning that the state-of-the-art
in the low-level aspects of vision would eventually catch up, studies of the
higher-level aspects of the recognition process were undertaken in simplified
artificial domains. Such domains, often referred to as blocks world domains
(Guz69, Huf71, Wal72, Tur74, Kan78)] are usually restrictive about the types of
objects that are allowed. A common example is polyhedra.

In synthetic, blocks world-like domains, features and their relationships are
assumed to be known precisely, circumventing the difficulties that Roberts en-
countered with his low-level modules. Thus freed from the difficulties of noisy
and error-prone low-level data, researchers in blocks world-like domains found
that topological constraints, which are more viewpoint invariant than most other
image relationships, can be used to perform many image analysis tasks, inciud-
ing object recognition. Unfortunately, the state-of-the-art in the low level aspects
of vision has never achieved the low error rates that would allow these methods
to be used with real data.

While part of Robert’s work was carried to unfruitful ends, the rest of
Robert’s work contains many of the essential components of a contemporary



3-d object recognition algorithm. It is interesting to speculate what the current
state-of-the-art might be had the lead provided by Robert’s been followed more
fully.

1 Classification of Object Recognition Methods

As there are so many approaches to recognition, it is difficult to find any single
taxonomy that fits all of them well. Perhaps the broadest distinction between
methods is based on the relationship beween the sensed data and the object
models. Later in this section, how this relationship influences the design of an
object recognition algorithm will be discussed.

Recognition systems may also be characterized by the nature of their com-
monly held attributes. In particular, in this section, systems will be compared
based on the nature of their fearures, their object models, and, most importantly,
their marching methods.

L1 The Relationship Between Object Models and Sensed Data

Object recognition algorithms are most obviously divided into two general cat-
egories based on the relationship of the sensed data to the models in the recog-
nition system’s vocabulary. One class consists of matched dimension domain
(MDD) algorithms !. Such algorithms assume that the scene geometry can be
sensed so that geometrical relations in the scene are isomorphic to geometric
relations in the models. MDD algorithms include methods for recognizing 2-d
objects from intensity images as well as methods for reconizing 3-d objects from
range images. In both cases, the geometry of the sensed scene can be directly
compared to the geometry of the models in the system’s vocabulary. The other
class of methods, which we will call general domain (GD) methods, consist of
systems that assume that the sensors do not give explicit geometric information
about the geometry of the scene. This class includes intensity-based 3-d object
recognition.

Most object recognition methods in the literature are of the MDD variety.
This is probably due to the fact that solving MDD recognition is simpler than
solving GD recognition. In a matched dimension domain, relative geometrical

!This tcrminology was introduced in [Hut88).



relationships existing between parts of the models are preserved in the sensed
data, to within noise and visibility constraints, regardless of the viewpoint and
pose of the object in the scene. By contrast, accomplishing recognition in general
domains is more difficult since the geometry of the scene is not directly available
from the image, and must be deduced indirectly.

MDD methods fall into two categories: those that are extensible to general
domain recognition and those that are not. Our focus is on the solution of the
object recognition from intensity images, which is a case of a general domain
problem. Thus, we will concentrate on those methods that contribute to un-
derstanding or solving such problems. We will briefly examine the techniques
that are not extensible to the general domain, primarily to gain understanding of
what makes them inextensible.

1.2 Anatomy of Machine Recognition

Object recognition algorithms may be classified according to the particular nature
of their commonly held attributes. In particular, recognition algorithms can be
compared by the nature of their:

e models: how objects are represented to facilitate recognition.

o features: how the sensor data is transformed and grouped into represen-
tations that facilitate recognition.

¢ matching: how the space of scene instances is searched for explanations
of the sensor data.

We will be most concerned with comparing recognition algorithms on the basis of
matching, since this is one of the primary issues in the design of a 3-d recognition
algorithm. However, the features and models that algorithms use often strongly
influences the matching strategy. Therefore, issues associated with modeling
and feature selection relevent to matching will be discussed where appropriate.

2 Previous Work in Object Recognition

Much of the remainder of this review examines and classifies previous work
on object recognition. In many cases, classification is not obvious since many



object recognition methods combine elements of multiple matching strategies.
In addition, there are far 100 many algorithms in the literature to discuss each
of them in full detail here. In order to do a broad survey yet benefit from
the insights resulting from detailed inspection of previous work, we will: first
define several archetypical matching methods, then discuss one or two examples
of each archetype in detail, and, lastly, briefly discuss other, similar, methods.
Approaches that have elements of more than one archetype will be discussed
where they fit best.

GD object recognition algorithms (i.e., not MDD algorithms) must search
the space of scene instances. MDD recognition methods, on the other hand,
exploiting the isomorphism between the sensor data and the models, need not
search this space. Instead, they may search the space of image-feature to model-
feature correspondences, looking for consistent sets of features among the model-
features and the image-features. GD recognition approaches usually employ one
of the following six archetypical matching paradigms:

e transformation clustering

e hypothesize and verify

predict-observe-backproject

backprojection

global feature-based

e optimization-based

MDD approaches are a more varied lot. Many of them fall into the above
catgories, but many do not. Those that do will be mentioned in the appropriate
section. Those that do not will be collected under the heading “Miscellaneous”.

2.1 Transformation Clustering and Hough Methods

The viewpoint consistency constraint implies that all the visible features on a
rigid object must be consistent with projection from a single viewpoint. Clus-
tering methods were among the first to employ the constraint, athough Lowe



(Low87b] is responsible for its recent appelation. The way that clustering meth-
ods use this constraint is by computing the object’s feasible viewing transfor-
mations and then attempting to locate any clusters in viewing parameter space
among the feasible transformations. Feasible transformations are typically com-
puted by forming a set of correspondences between enough image-features and
3-d model-features to yield solution for a unique (or almost unique) set of view-
ing parameters that consistently projects the 3-d features onto the corresponding
image features. Thus, most clustering methods employ object-artached features.
Once the feasible sets of viewing parameters have been calculated, objects are
recognized by locating clusters of feasible viewing parameters. In such systems,
clusters are powerful evidence for the existence of an object in a scene since a
cluster indicates transformation that maps many 3-d model features near to im-
age features. The probability of such an event occurring accidentaily, especially
for large clusters, is small.

Once possible clusters have been identified, recognition is usually based on
the properties of the clusters. Typically, the largest or largest few clusters are
accepted, or the cluster size is required to be larger than some threshold cluster
size.

In a clustering system, computation of feasible sets of viewing parameters
is usually the least difficult part of the algorithm. Many possible solutions
exist, differing in such details as the number of correspondences necessary to
determine the viewing parameters, the number of degrees of freedom allowed
in the transformation, and the nature of the features. For example, in the case
of weak perspective, where there are six degrees of freedom, [(Hut88] gives
a solution using three pairs of simple points, whereas a single pair of more
complex features called vertex pairs suffices [TM87).

The most problematic aspect of recognition using clustering is the location of
significant clusters of feasible sets of viewing parameters in a high-dimensional
parameter space. Often, the statistical properties of the distribution of the feasible
viewing parameters is difficult or impossible to determine, precluding the use
of well-understood probabilistic methods. In such cases, various non-probalistic
techniques are used. These include variations of the k-means method, projection
onto lower dimensional subspaces, and the Hough transform.

The k-means method is a simple iterative strategy for finding clusters in an
n-dimensional vector space. The assumption is made a priori that there are
exactly & clusters, which is a weakness. The n-d input vectors are divided into
k groups, and prototypical values for each of the k classes is computed, often
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the centroid of the vectors in the class. The vectors are then redistributed to
the class whose prototype is nearest, according to some distance metric. This
process is iterated untl changes in the prototypes are no longer significant.

One of the problems with this approach is that a distance metric must be
defined in the parameter space, which often consists of mixtures of rotational
and translational parameters. Additionally, proximity in the parameter space
may or may not imply similarity in projected shape.

Another method for finding clusters in high dimensional spaces operates by
projecting the feasible points onto lower dimensional subspaces, and searching
for clusters there. This is advantageous since finding clusters in lower dimen-
sional spaces is easier than finding them in higher dimensional ones. However,
the clusters in lower dimensional spaces could result from the accidental coinci-
dence of points along the dimensions of the projection, and therefore the validity
of such clusters should be verified.

The final generic clustering technique that we will discuss is the Hough
transform. The idea of the Hough transform is to quantize the parameter space
into uniform buckets and count the number of feasible parameter vectors in each
bucket. Each bucket will tend to contain similar viewing transformations. Buck-
ets with large occupancies will correspond to clusters, which, in turn, indicate
likely instances of an object in the image.

There are a number of problems with Hough based methods. This is evident
from the analysis in [Hut88]. When the number of “good” features is large
compared to the number of “bad” features, i.e., features not resulting from an
instance of an object in the image, then Hough methods work well. This is
because the peaks in the array of bins is casily located: they are not submerged
in a ocean of bad transformations. Unfortunately, in complex images, most
of the features do not correspond to instances of the objects being sought. In
this case, the probability of large false peaks in the bin array is large, and it
becomes difficult to distinguish them from true peaks. One way to combat this
problem is to reduce the number of features by making them more complex.
Since the features are more complex, there are fewer of them, helping to reduce
the number of false peaks. Unfortunately, it also reduces the number of features
on the model that can contribute to a true peak in the bin array. In addition,
since complex features tend to be less spatially localized, the chance that a
feature may be occluded is increased. Further, the size of the bin array becomes
astronomical when the dimension of the parameter space is more than four or
so. In such cases, projection to lower dimensions becomes a necessity, which
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Figure 1: A vertex pair feature. AB is the spine, with A as the base vertex and
B as the auxiliary vertex.

further aggravates the problem of random peaks.

Thompson and Mundy [TM87] provide a good example of using Hough
clustering to recognize 3-d polygonal objects in intensity images. Features con-
sist of “vertex-pairs”, shown in Fig. 1, which come in 2-d and 3-d varictdes. The
2-d variety is confined to a plane. Both kinds consist of a “spine” which joins
two vertex points. One of the vertices is defined to be a “base vertex”” which has
two other edges incident on it, in addition to the spine. The other “vertex” is the
point at the other end of the spine. In 3-d, the vertices consist of the vertices of
a 3-d polygonal model. The 3-d vertices project to 2-d vertices, and, as shown
in Fig. 1, the 2-d vertex pair is characterized by the angles a; and a, between
the spine and the edges incident on the base vertex, as well as the spine vector.
How such vertex pairs are segmented from the image is not discussed.

For a given 3-d vertex pair, there is a unique weak perspective transformation
that projects the 3-d vertex pair to a given 2-d vertex pair. Thompson and Mundy
compute this projective transformation using the quaternion technique of [FH83)
which allows an algebraic solution. However, to speed the computation of the
transformation, the computation is split into in-plane translations and rotations,
and out-of-plane rotations. For each 3-d vertex pair in the model polyhedron,
the authors compute a table of the out-of-plane rotation parameters versus the
values of the angles in an observed 2-d vertex pair, a; and a;. There is no



entry if the 3-d vertex pair is not visible. The set of tables for all possible 3-d
vertex pairs comprises the model of each object. Thus, when a 2-d vertex pair is
detected in the image, possible out-of-plane rotation parameters can be quickly
computed. The remaining in-plane rotation, translation, and scale parameters
can be easily determined by aligning the spines and vertices of the 2-d and
projected 3-d vertex pairs.

The clustering used by [TM87] is Hough-based, with the 6-d transform
parameter space being decomposed into a 2-d space of out-of-plane rotations,
a 1-d space of in-plane rotations, and finally, a 3-d scale/translation parameter
space. Each correspondence between a 2-d vertex pair and a 3-d model-derived
vertex pair yields a set of transformation parameters. Entries are first made
in the 2-d out-of-plane rotation bin array, with bins representing two degree
increments in o and a,. The bin array is scanned for peaks indicating clusters,
and these peaks are re-histogrammed in a 1-d array for the in-plane rotation.
Clusters detected in this 1-d table are further clustered in the 3-d space of
translation/scale. This final clustering is done using a variation of the k-means
method described above. A cluster in the final histogram with more than three
assignments is considered a correct match.

Results were good, although the tests were done on images where the ob-
ject(s) to be recognized possessed the vast majority of the features. As mentioned
earlier, this type of image is the type the clustering algorithms perform best on.

Thompson and Mundy also describe a nearly identical approach to recogni-
tion in range images [CMST88]. The Hough-based matching scheme is identical,
and most of the novelty resides in segmenting vertex pairs from range images.
Strangely, the authors continue to use 2-d vertex pairs even though the range
data provides true 3-d features that could be compared directly with the model
features rather than though their projections.

Hough-based recognition methods are further beset by problems not men-
tioned so far. In particular, choosing the bin size is difficult. Making the bins
large reduces storage requirements. Additionally, and more importantly, the
chance that the cluster resides wholly in one bin is enhanced, improving the
chances of detecting the cluster. On the other hand, since the bins are larger,
the chance of large random peaks is larger as well, making detection of true
clusters more difficult. Also, since the parameters of the bin are typically used
to estimate the pose of the object, a large bin size reduces the accuracy of the
estimate of the pose of the object. Making the bin size smaller improves the
accuracy of the estimate of the pose but reduces the likelihood that the cluster
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will fall into a single bin, making detection more difficult. Clearly, if there
were no errors in the calculation of the feasible wransformations, a very small
bin size would be preferable as all the points in the true cluster would fall in a
single bin while the chance of large random peaks would be vanishingly small,
simplifying detection, and improving the estimate of the pose. However, since
there is always error in the transformation parameters, there is an optimal bin
size that depends on the statistics of the error and the transformations that do
not belong to the true cluster.

Often, the optimal cluster size for detection is too large for precise pose
estimation. In order to overcome this problem, [SDH84, SHD84] discuss an
iteratively subdivided Hough procedure for finding clusters of feasible transfor-
mations in a 5-d parameter space. Detection is done at a large bin size that is
good for detection and then the detected clusters are rebinned into smaller an
smaller bins until the cluster begms to fragment into multiple bins, providing
better pose estimation.

In a similar vein, [LHD88] describes a recognition method that locates clus-
ters in a full 6-d parameter space. Features are 2-d and 3-d triangies. The
vertices of the 2-d triangles are generated by intersections of linear contours
in the image and the vertices of the 3-d triangles consist of the vertices of the
polyhedral model. Corresponding the points of a 2-d and a 3-d wiangle leads to
a nearly unique solution for a feasible transformation. The feasible transforma-
tions are clustered in a 3-d bin array that uses only the translational parameters,
as they can be computed very quickly. Peaks are located by examining a 3 x 3
neighborhood and suppressing nearby peaks that are likely to be fragmentations
of true peaks. Then, peaks in a histogram of translational parameters are de-
tected. Finally, rotation parameters of the transformations are computed and
checked for consistency. Visibility of the model triangie pairs can be deter-
mined from the rotation parameters, and these constraints are also applied to
filter transformations. A further heuristic is applied to determine which of the 3
possible image-triangle to model-triangle vertex correspondences is most likely
to be correct. Final acceptance of a cluster is based on how closely the projec-
tion of the consistent features in the cluster match with actual image features.
Once a cluster has been accepted, a final fit of the model triangles to their cor-
responding image triangles is done using a least squares measure, yielding good
accuracy for the estimate of the pose of the object.

Stockman and Esteva [SE8S] describe a similar transformation clustering
technique. In this case the transformations are constrained, and result in a 3-
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d parameter space. Correspondences are formed between pairs of 2-d feature
points and 3-d model points, which, in the 3-d transformation space, allow the
pose to be determined uniquely. Feasible transformatons are computed for
all possible pairings of image and model features; unlike [TM87, CMSTS8S8]
visibility constraints are not applied. Clusters are then detected among the
feasible transformations. Although not explicitly stated, it appears that a variant
of k-means is used to find clusters. Another method, described in [FHK*82], is
very similar.

A series of papers and reports by Lamdan, Wolfson, and Schwartz {LSW88b,
LW88b, LSW88a, LW88a] describe an interesting clustering based algorithm for
recognizing 3-d objects from intensity images. An earlier paper [KSSS86] de-
scribes a similar approach for 2-d objects. At the heart of these methods is a
representation scheme that the authors call “geometric hashing”. A key com-
ponent of the “geometric hashing” approach is the existence of a representation
of the features that is invariant to the*2-d transformations that the features un-
dergo as the object’s pose changed in 3-d space. For example, object-attached
features on flat, rigid objects imaged under weak perspective undergo a affine
transformations as the viewing parameters are varied. If primitive features, such
as corner points, are described solely by their position in the image plane (not
by additional descriptors such as orientation, curvature, etc.), then a set of three
such points defines a basis set that forms a coordinate system in which all the
remaining feature points can be described. As shown in Fig. 2, affine transfor-
mation of the points does not affect their coordinates in the basis-set coordinate
system. Of course, this is only true if the same basis set is used. Similar repre-
sentations can be defined for object-attached features on rigid 3-d objects under
weak perspective as well; four points are required in this case.

Given existence of such invariant representations of feature points in terms
of a multipoint basis-set, the “geometric hashing” approach simply represents
every feature point in terms of every possible basis-set and stores each point’s
coordinates in terms of each possible basis-set in a hash table data structure.
The “hashing” is done by representing each coordinate by a binary number
and truncating the low order bits, leading to a discretization of the coordinate
space into hypercubes, and then using the resultng binary string as a key into
a hash table. The buckets in the hash table are, therefore, representations of
various hypercubes in the feature space. The hash table is loaded with all
possible representations of all possible features for each model in the system'’s
vocabulary. It is possible that a hypercube may contain more than one feature,
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(a) (®)

Figure 2: Demonstration of invariance of Lamdan er a/’s feature representation
to affine transformations. Above, (b) is the result of applying an affine transfor-
mation to (a). In both (a) and (b), the feature points a, b, and ¢ form a “basis”
coordinate system that has the property that the coordinates are invariant to affine
transformations. The other feature points, such as point d, can be represented
in terms of these invariant coordinates. For example, the coordinates of d are
(2,1) in both (a) and (b) in spite of the affine transformation between them.
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especially if the size of the hypercubes is large.

Recognition proceeds by picking a possible basis (three points) in the image
and computing the coordinates of all the other feature points in the image in
terms of it. Each hypercube that contains an image feature is retrieved. Records,
consisting of jmodel, basis; pairs, are constructed. For each such record in the
hypercube, increment a vote counter for that record. If any particular jmodel,
basis;, record scores a large number of votes, then it a matching candidate.

The correspondence between the image basis and the model basis provides
a unique solution to the transformation parameters. Thus, while the transforma-
tions are not explicitly represented in this method, they are implicity coded in
the representation. The “voting procedure” is thus voting for a discrete set of
possible transformations that are induced by the choice of the image basis points.
For this reason the method should be considered to be a transformation clus-
tering approach. The candidate matches and the associated transformations are
then retrofitted using least squares and employing any additional, close matching
points in the image. Finally, a verification is done between the boundaries of
the model and the edge contours in the image.

The method of “‘geometric hashing” suffers from a few difficulties. First,
use of the term “hashing” is somewhat misleading because it implies constant
time access of the records. Since only the hypercubes themselves are indexed
in the hash table, strictly speaking, the access time is linear in the average
occupancy of the hypercubes. The only way to reduce this is to make the
quantization finer. However, this makes it more likely that a noisy feature will
not hash to the correct hypercube, similar to the problems faced by Hough-
based methods. Under poorer conditions than the high-contrast, backlit scenes
reported, the method may break down. Further, extension of this method to true
3-d objects requires that the voting occur at all hypercubes intersected by a line
in the feature space, which appears to be an inefficient operation. Finally, the
combinatorics of this algorithm are unfavorable since voting must be done for
every possible basis set in the image.

There are numerous examples of clustering approaches used to recognize
2-d objects from intensity images (MF75, Bal81, Seg83, BS85, KK85, TMVS$S,
Hwa87, Ger88, SKB82], a matched dimensionality domain. With one excepton
(Hwa87], these methods employ Hough-based clustering exclusively. In 2-d
methods, the transform space is at most 4-d, consisting of translation, rotation
about the normal to the image plane, and 2-d translation within the image plane.
In [MF75, Bal81] the pioneering work on applying the Hough transform to the
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recognition of arbitrary 2-d shapes is described. In common with Hough-based
approaches in the 3-d recognition domain, some of these methods attemnpt to
overcome the problem of a high-dimensional parameter space by decomposing
the transform bin array into lower dimensional bin arrays [BS85, Seg83). The
approach described in [TMV85] determines weights for each transformation
based on a rigorously defined saliency measure of the features used to compute
the transformation. This greatly reduces the number of random peaks in the bin
array, though extending the notion of saliency to 3-d appears to be somewhat
difficult. Another method [Ger88] “links” transform space and the feature space
by performing, essentially, a verification of the clusters detected in transform
space by matching predicted features in the image to filter false clusters from
tTue ones.

2.2 The Hypothesize and Verify Paradigm

As we have seen, methods that recognize by clustering attempt to form hypothe-
ses that have considerable global support. Such methods need many features to
“vote” before a “consensus” is reached, and, with few exceptions, the clustering
is the sole means of accumulating evidence for particular hypotheses. The hy-
pothesize and verify paradigm (HVP), on the other hand, is less democratic. In
the HVP, only features that can explain the image data in the locality of them-
selves are allowed to become valid hypotheses. Then, they may win overall by
explaining a more global portion of the image data.

Typically, the first step in the hypothesize and verify paradigm is to con-
struct a sparse representation of the image in terms of features. Ideally, such
features are highly selective, i.c., model generated features are chosen so that the
likelihood of them having the same attributes as an incomectly matching image
feature is very small. Unfortunately, there are practical limits to how selective
features can be, as highly unique features tend to be more global in nature, in
addition to often being too sparse. Given a reasonable choice of image features,
one is chosen by some means, and the set of possible scene instances that could
explain its existence, to within measurement error and noise, is computed. Typ-
ically, this set is represented by a number of individual scene instances that are
treated as separate, competing hypotheses. This process is called the generarion
phase. Next, the existing hypothesis are verified. As mentioned in the preceding
paragraph, each hypothesis provided by the generation phase is usually a single
scene instance. This scene instance is then used make predictions that can be
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used to perform a detailed check against the image. Based on how well the
predictions match the observations, a decision is made as to whether the hy-
pothesis is strong enough to be considered a valid recognition result. Typically,
the representations of the predictions and the representations of the observations
used in the comparison are more complete than the representations used during
the generation phase of the HVP. That is, the representations contain more of
the information that is contained in the model instance or the image.

The exhaustive approach to recognition would be to consider every model
instance, to within an error resolution volume, as a hypothesis and to verify
all of them, passing those that scored high enough in the verification. This
is computationally untenable. The hypothesize and verify paradigm overcomes
this by considering only those model instances that have at least a small bit of
evidence in their favor; usually one, two or a few features that match image
features. This filtering vastly improves the efficiency of the search.

In the hypothesize and verify algerithms come in a spectrum of varieties.
Aside from differences in the types of features and representations that they use,
these algorithms differ in two other respects:

1. how much effort is expended to generate a strong hypothesis, and

2. how features and hypotheses are ranked for further processing.

With respect to item 1, some algorithms have opted 1o expend the minimal
effort generating hypotheses, typically creating many weak hypotheses that are
then rejected, while the few strong hypotheses are passed. This approach insures
that the correct hypotheses will be very likely to be among the set generated.
This approach is robust, but tends to be slow since verification is usually rather
expensive in comparison to generation. The other extreme, is to generate hy-
potheses that are rather strong, and, therefore, likely to be correct. Since the
generation algorithm in this approach is discriminatory, it may not allow the
correct hypothesis to pass on the basis of the limited information that is has
available to it, thus missing a correct interpretation. Also, if taken to extreme,
the effort spent generating a strong hypothesis may outweigh the cost of verify-
ing it. Thus, this extreme tends to be less robust, and often just as slow as the
other extreme. The optimum tradeoff falls somewhere between the two. [(KJ86]
describes a 2-d algorithm where the tradeoff is adjusted to minimize the overall
time spent generating and verifying hypotheses under certain assumptions about
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the way the hypotheses are generated. Unfortunately, such analysis cannot easily
be extended to the 3-d domain.

With respect to item 2, the queue of features waiting to be processed can
be ranked according to the likelihood that a given feature will generate a strong
hypothesis. If the ranking heuristic is good, this will reduce the time it takes
to locate objects in the scene. Similarly, hypotheses that have been generated
but not yet verified can be ranked in the queue for verification, also reduc-
ing recognition time. Most HVP algorithms rank features in some manner.
For example, a number of systems use model-independent feature grouping
[Low87a, Chi89, Hut88, Jac87] to rank the features. It is less common for sys-
tems to rank the generated hypotheses before verifying them; usually they are
verified immediately upon being generated. An example of a 2-d object recogni-
tion system that does rank hypotheses is described in [BC82). In that system, as
mentioned previously, considerable effort is spent to generate strong hypotheses.
In that system, hypotheses are graphs of whose nodes are possible image-feature
to model-feature pairings, and arcs represent mutually consistent pairings, and
whose nodes are fully connected. These hypotheses are then ranked for verifica-
tion by the size of the graph, which simply measures the number of features that
have been matched. Chien and Aggarwal’s system for recognizing 3-d objects
[Chi89] also ranks the generated hypotheses. In their work, transformations
are computed for each hypothesis from hypothesized correspondences between
quadruples of image features and model features. The transformation is solved
simply as a system of linear equations. In particular, orthogonality of the rota-
tion matrix is not enforced. If the hypothesized correspondence is correct, then
the computed transformation should have an orthonormal rotation matrix. The
rotation matrix is not likely to be orthonormal if the correspondence is incorrect.
To rank the hypotheses, Chien and Aggarwal examine the transformation associ-
ated with each hypothesis to determine how close its rotation martrix is to being
orthonormal . The hypotheses with transformations containing rotation matrices
that are nearly orthonormal will be processed first, and grossly non-orthonormal
cases will be eliminated.

2.2.1 3-d Intensity-Based Hypothesize and Verify Methods

An excellent example of the HVP is the ORA (Object Recognition by Alignment)
system described in [HU88, Hut88]. This system also typifies how object-
attached features may be used to drastically simplify the computation of the
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hypothetical viewing transformation under the HVP.

The essence of the ORA system is very simple. First, image features, con-
sisting of triplets of points, are put into correspondence with model features,
consisting of triplets of 3-d model points. For each correspondence, the ORA
system “aligns” the model so that the projection of the triplet of model points
comprising the model feature exactly corresponds to the triplet of points in the
image feature. Of course, for each pairing of image and model features, there
are three resulting possible permutations of image points and model points, and
therefore three possible alignments. ORA uses the weak perspective imaging
model, and therefore three image-point to model-point correspondences are suf-
ficient to determine the viewing transformation to within a reflection across the
image plane. Note that ORA’s approach to solving for the transformation is an
improvement over that in [Chi89] since the orthonormality of the rotation matrix
is maintained. Thus, ORA does not consider any invalid transformations. After
alignment, the hypotheses are verified. If a hypothesis is accepted, the image
features that have been matched to it are removed from further consideration.,

ORA employs curvature-based segmentation of image curves. ORA’s cre-
ators argue strongly for the use of inflection points, or zeroes of curvature, and
line segments as features. They give two reasons for this: first, inflections and
line segments are preserved when a space curve is projected, and second, they
argue that there is no psychological evidence for high-curvature points over in-
flection points, citing Lowe’s cat [Low85] as a counterexample to Attneave's
[At54]. Oddly, they go ahead and use high-curvature points anyway. All of the
features, are assumed to be object-attached, otherwise the procedure of assum-
ing 3-d to 2-d correspondences and calculating the alignment transform breaks
down. As a result of the use of object-attached features, ORA’s vocabulary con-
sists of planar or polyhedral objects. The image features are ranked according
to how likely they are to be part of the same object in the scene. The heuristics
used are:

1. Points are likely to belong to the same object if they appear on the same
edge contour, or if they belong to two contours that are likely to have
come from the same object.

2. Two contours are likely to be from the same object if their endpoints are
in close proximity.

3. Two contours are likely to be from the same object if the relative intensity
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on either side of each contour is comparable and the contours form a
compact geometric shape.

Verification in ORA is a two stage hierarchy: the inital stage is cheap
computationally but eliminates many false matches, while the second stage is
slower but more accurate. The initial stage operates by checking the endpoints
of curve segments in the projection of the model with segment endpoints in the
image. Endpoints are either inflection points, high-curvature points, or endpoints
of linear segments. Both the position of the points and the direction of the
tangents through them are required to be within an error tolerance before an
endpoint can be said to match. If more than half of the endpoints visible in the
model match with endpoints in the image, then the hypothesis is passed through
the initial stage of verification. The detailed verification procedure compares all
of the visible contour segments with nearby image segments. If enough of the
predicted boundary is near to an image boundary, the hypothesis is passed.

~ The ORA system is typical of 3-d HVP methods in that it employs an
analytic formula to yield the transformaton that maps some minimal number
of 3-d model points onto 2-d image points. For any such method to work, the
features must be object-attached. Some work has been done to extend ORA to
smooth 3-d objects (BU88, SU88]. However, it is unlikely that the alignment
method, in its present form, can be extended to recognize smooth 3-d objects.

Lowe’s SCERPO system, described in [Low87b, Low87a, Low85], is also
a HVP approach. It differs from ORA, which came later, in several respects.
First, SCERPO is only able to recognize polyhedral objects since object-attached
line segments constitute its feature set. Lowe’s work is based heavily on the
idea of “perceptual grouping” which is essentially the ability of a vision system
to group features based on a model-independent measure of their “perceptual
significance”. Perceptual significance is really the same as non-accidentalness,
l.e., the likelihood that a configuration of features observed is not the result of a
visual accident. By making several assumptions about the stochastic properties
of the distribution of detected line segments in the image, Lowe is able to come
up with an analytic heuristic measuring the perceptual significance of several
types of relations between line segments: proximity, parallelism, and colinearity.
These significance measures work on pairs of line segments. Significant pairs are
further grouped into significant clusters by noting the pairs that share segments.

The “perceptual grouping” process in SCERPO can be carried out equally
well on the 3-d model segments as on the 2-d image segments. Hypothesis
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generation then proceeds by simply matching 3-d groupings to 2-d groupings
with the same number of segments, with the groupings with the most seg-
ments being processed first since they are the most “significant”, although such
groupings will lead to a large number of possible permutations in the correspon-
dences of image line segments to model line segments. Image groupings with
the same number of segments as model groupings are matched, and the view-
ing transformation is determined using the correspondences of the individual
line segments (three or more uniquely determines the transformation), yielding
iniial hypotheses. The initial hypotheses are then verified. SCERPO verifies
hypotheses by first using the initial hypothesis to find all image line segments
that match sufficiently well to line segments predicted by the model. These
image-segment to model-segment pairings are then used to find a least-squares
fit between the projected model-segments and the image-segments using a muld-
dimensional Newton-Raphson algorithm. Note that this differs greatly from the
tracking method of VGD due to the fact that explicit correspondences are made
between single pairings of 3-d model line segments and 2-d image line segments.
VGD'’s tracking method maintains a fuzzy degree of correspondence between
all possible pairings. In addition, the features in VGD’s tracking method are not
object-attached. Recently, the fitting technique used by SCERPO has been ex-
tended to handle parameterized models [GL87). Finally, after the least squares
fit, the predicted model-segments are again matched to image-segments, and if
more than ten matching pairs result, the hypothesis is accepted.

The recent work of Chien and Aggarwal [CA87, Chi89] follows the HVP.
Similarly to both the ORA and SCERPO systems described above, Chien and
Aggarwal’s system detects features in the image (sets of four consecutive “corner-
like” features from the edge contours) and forms hypothetical correspondences
between these quadruples of image points and quadruples of 3-d model points.
This allows the transformation parameters to be solved. As mentioned carlier,
Chien and Aggarwal do not enforce the orthonormality of the rotation matrix por-
tion of the transformation, in contrast to ORA, and therefore many inconsistent
hypotheses are generated. These are weeded out by applying the orthonormality
constraints.

Chien and Aggarwal’s algorithm employs 2-d feature points and 3-d model
feature points. The 2-d feature points are simply high-curvature points. The 3-d
points are chosen by the finding 2-d high-curvature points in three orthogonal
“principle views” of the object, and then determining the intersections along the
lines of sight from the different views to yield 3-d feature points. Since the
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3-d high-curvature points are assumed to project to 2-d high-curvature points,
these features are object-attached. The features are ranked by the heuristic that
postulates points with higher curvatures as more likely to be reliably detected
than those with smaller curvatures. After hypotheses with valid transformations
are found, they are then verified. Verification is a direct comparison of contour
shape using a polar representation of the contour with the contour centroid as
the origin. This measure does not work for occluded objects. A method for
doing verification for occluded objects is discussed, but no results are given.
It appears that parts of the hypothesis generation algorithm require knowledge
of figure-ground segmentation as well, rendering this algorithm very weak for
practical scenes. In its favor, the verification method could easily be fixed, using
a method such as the one in ORA, or the one used by VGD.

All of the methods described above owe a large debt to the seminal work
of Roberts {Rob64], which also followed the HVP. Like SCERPO, Roberts’
system used perceptual groupings. In-Roberts’ system, the groupings consisted
of polygons about vertex points in the image. These image polygons were
topologically matched to polygons derived from the model. This is also similar
to SCERPO’s topological matching of perceptual groupings, though SCERPO’s
implementation is more robust. Following the topological matching, Roberts’
system computed hypothetical transformations in a manner similar to the systems
described above, though the particulars are most similar to Chien and Aggarwal’s
system. Roberts’s method does not enforce orthogonality of the rotation portion
of the transformation, forcing him to patch it up in an ad hoc manner. The result
of computing the transformation is a set of hypotheses, which are then verified.
Verification consists of computing the mean-square error in the projected model
points that were members of the original topological match and the corresponding
image points.

Other HVP approaches to recognition of 3-d objects from intensity images
tend to be very similar to the systems described above, though they may be less
complete. For example, the method described in [Whi88] goes through some
representational gymnastics in a feature space called “vertex space” to come up
with features, called “key features”, also known as triangles, that are matched to
image features. After matching, a viewpoint hypothesis is generated. As usual,
the model is then projected, verification is done by seeing if enough predicted
vertices match observed vertices. Similarly, [PD87] describes a hypothesize and
test algorithm that uses a representation called an “asp”, consisting of the defor-
mations that the triangles in the polyhedral model undergo as the viewpoint is
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continuously changed. Features in the image, which are polygons, are compared
with the features in the “asp” to see if there are any matches. If there are, a
viewpoint hypothesis results. The “asp” is really a form of multiview model.
In fact, the features used are object-attached, and therefore, a multiview model
is superfluous since viewpoint hypotheses can be computed directly. Details of
the verification method are not provided, nor are any results.

A set of two papers by Hansen and Henderson [HH87, HH88] describes a
HVP approach called “recognition by strategy trees”. The method works with
polyhedral objects, and represents them as “strategy trees”. A strategy tree con-
sists of a model at its “root”. A set of “level one features”, and a “corroborating
evidence subtree” constitute the body of the tree. The level one features are
the “strongest set of view-independent features chosen for their ability to per-
mit rapid identification of an object and its pose”. Given an image feature, the
matching method finds the model’s “level one features” that have similar at-
tributes. These features are used to find the pose of the model, presumably in a
manner similar to the other methods described above, or by using visibility con-
straints. For each such “level one match”, a “corroborating evidence subtree” is
evaluated. Essentially, this is a verification procedure. Details are sketchy, but
the verification seems to check predicted features against observed features and
then perform a fit, as in SCERPO. Following that, a detailed boundary check,
as in [BC82], is done. The most interesting aspect of this approach is the free-
dom to tailor the features used in the generation and test modules to optimize
performance for each object.

The method of Sato et al [STT87] is interesting because it uses a connec-
tionist network both to filter competing hypotheses and to fit the model to the
data. Features are based on line segments. Hypotheses are inidally generated
by pairing “L” junctions detected in the image data with “L” junctions in the
model, and using the hypothetical correspondences to solve for initial viewing
parameters. Verification consists of finding “clusters” of compatible hypothe-
ses in the graph of compatibility relations. Each image feature will generate
many possible hypotheses seeking to explain it. A “compatibility” measure is
defined, and a Hopfield network [HT85] is used to simultaneously adjust the
compatibility between hypotheses, yielding clusters of compatible hypotheses.
Note that the clusters exist in the graph of compatibility relations, not in viewing
parameter space. Each cluster indicates a recognized object. The information
in the hypothesese comprising the cluster are then used to refine the estimate of
the viewing parameters.
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Fisher [Fis83] describes a HVP method that is unique in that it employs
region based features in contrast to the edge-based features used by most other
intensity image recognition systems. However, estimating the pose of a model
from region data is difficult. Fisher’s technique is to correlate the cross sections
of model surfaces to segmented image regions, uitimately solved by optimizing
a weighted distance measure between the projected model surface and the im-
age region. Hypotheses are represented in a frame-like manner, with slots for
transformation parameters, observed surfaces, and instantiated subassemblies.
After generation, many of the surface slots and subassembly slots have not been
filled. A phase of attempting to fill the slots is entered, implemented by a
rule-based system. The initial phase, described earlier in the paragraph, can be
called to instantiate subassemblies as necessary. Once all slots are filled, the
complete hypothesis is verified. Verification consists of reestimating transfor-
mation parameters, checking if projected model surfaces substantially cover the
image regions assigned to them, and finally, checking if the predicted boundary
matches well against the observed boundary.

The primary weaknesses in Fisher’s algorithm include the method for es-
timating the initial viewing parameters using correspondences between model
surfaces and image regions, and the requirement that the segmentation of the
image be very good. Hand segmented images were used in to obtain the results
shown in the paper. Strengths of the algorithm include its use of hierarchical
models and hierarchical matching. This helps to improve the efficiency and
robustness of the algorithm.

2.2.2 MDD Hypothesize and Verify Methods

Many 2-d recognition systems have been reported that use the HVP. Some
of these methods exploit the symmetry that exists between the model domain
and the image domain, with the result that they are difficult or impossible to
extend to the 3-d case. A example of such a method is the well-known “local-
feature-focus method” (LFF method) [BC82). This method was designed on
the premise that verification is very expensive, so generating good hypotheses
(i.e., ones likely to be correct) is important. Hypothesis generation is done via
a graph search in a graph where the nodes represent possible image-feature to
model-feature pairings, and arcs between nodes represent compatible pairings.
Features are circles and corners. Roughly speaking, consistency is determined
by the absence of competition for the same features, as well as agreement of
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relative poses between image features and model features as represented by the
pair of nodes in the graph. The graph is the searched for the largest sets of
mutually consistent pairings of image features and model features. In order
to improve the effiency of the NP graph search, nodes which contain hand-
selected “focus features” are used to focus the search for maximally connected
subgraphs. The largest such set is used to determine the viewing transform,
a rotation and translation, by aligning corresponding features. This hypothesis
is passed to the verification module, which directly compares the transformed
model boundaries to the image boundaries using probes that are perpendicular
to the model boundary. Dark-to-light transitions are positive evidence, light-
to-dark and all-light transitions are negative evidence, and all dark transitdons
are neutral. This scheme assumes that the relative brightness of objects and
background is known a priori.

A method that is similar in many respects to the LFF method called “3DPO”
is described by Bolles et al in [BHH83, BH86] 3DPO attempts to recognize
3-d objects in range images. 3DPO’s hypothesis generation apparatus is very
similar to that of the LFF method described in the preceding paragraph. The
features differ, being based on range discontinuities. They include circular arcs
and linear segments, along with information about the surfaces on either side of
them. As in LFF, the modeling system allows the user to label certain features
as being particularly selective, as in the “focus features” of LFF. The viewing
parameters are computed by successively constraining the possible transforma-
tion parameters as each image feature is matched to a model feature. In this
regard, the hypothesis generation portion of 3DPO is an instance of the predict-
observe-backproject recognition paradigm discussed in the following section.
Verification consists of a comparison between the predicted range image that the
model would produce with the actual data.

Rearick ¢t al [RFC88] describe a method based on a connectionist network
(as distinct from a neural net) that, they argue, is fundmentally different from
any “model-based” method. The method is region based, and classifies regions
into three types: hons (Japanese for long, thin objects like pencils) , cusps,
and loops. The regions are detected using a modified medial axis transform
(Hea86] and classified according to the topology of the skeleton and the width
of the region about the skeleton. Relationships between the regions are used to
recognize objects. Each object has a customized network that “filters” out sets
of regions whose relations are not sufficiently similar to corresponding model
relations. In fact, the network is really doing nothing more than a clique-finding
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procedure similar to that hypothesis generation portion of the LFF method, one
of the methods that Rearick et al say they are so different from. There is no
explicit verification procedure.

Part of VGD is based on work described in (GTM89, GTM87)]. The method
is for recognizing 2-d objects, but the hypothesis generation portion of it has been
incorporated into VGD with few modifications. The features, called “CPN’s”,
are vectors that efficiently encode the shape of edge boundaries in the neigh-
borhood of high-curvature points. Using training images, models of objects are
constructed that consist of both the sparse CPN representation and a complete
z, y, and slope-angle () versus arclength representation. The models are stored
in a special vector-associative memory, implemented with a k-d tree [Ben75]
indexed by the five descriptive parameters of the CPN’s. The associative mem-
ory allows a model containing a feature that matches an image feature to within
a user-specifiable tolerance to be retrieved in O(log V) time, where N is the
total number of model CPN’s stored in the memory. To the author’s knowledge,
this is the most efficient hypothesis generation method in the literature most of
which are linear at best. Hypotheses are generated by querying the associative
memory for models possessing features that are similar to the image feature,
and then aligning the model feature with the image feature. These hypotheses
are then verified in a hierarchical fashion. First the percentage of CPN features
predicted are compared to those detected to reject many possible hypotheses.
Then a detailed boundary check similar to, but more general than, the one used
by the LFF method is performed.

The GROPER system [Jac87] uses a hash table to implement an associative
memory for hypothesis generation. The indexing is done on quantized versions
of five parameters that describe the geometric relationship between two pairs of
line segments. This approach has the usual problems associated with quantizing
the parameter space (see the discussion of clustering based methods, and in par-
ticular, [LSW88b, LW88b, LSW88a, LW88a] above). Verification consists of
checking how many detected line segments are close to predicted line segments.
GROPER s not unique because of its generate and test modules, but rather in
how it uses model-independent grouping to reduce the number of hypotheses
that are generated. Edge grouping is done on the basis of relative proximity
and orientation similarity. The number of hypotheses generated was reduced by
nearly a factor of 400 by the inclusion of the grouping module. An improve-
ment in accuracy was also noted, primarily because the verification module in
GROPER is weak, and the relatively powerful grouping module assisted the
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verification module.

Perkins [Per77, Per78] represents both the image boundaries and the model
boundary in terms of “concurves”, sequences of line segments and circular arcs.
Concurve sequences are matched in a correlational manner. If a model has a
subsequence of concurves that matches a subsequence of an image concurve,
then a transformation is determined, and a hypothesis is created. The transfor-
mation is determined by aligning the matching concurves in tangent-slope-angle
versus arclength space, and the hypothesis is checked in a manner similar to
the LFF method, differing only in that the presence of an edge pixel with the
proper direction is positive evidence, and there is no negative evidence. This is
superior to the LFF verification technique as it requires no a priori assumptions
about the illumination and reflectance of objects relative to the background.

Methods that rely on correlation of the portions of the model boundary
with the image boundary for matching or pose determination, as in Perkins
method above, cannot easily be extended to the general 3-d recognition. This is
because the shape of the model boundary may change drastically with viewpoint,
requiring that a correlation be performed for many points viewing parameter
space. Since correlation is often time consuming, performing a correlation for
a large number of viewpoints would be very slow. In effect, the boundary
representation is too complete to allow efficient hypothesis generation.

Another method that uses correllation to generate hypotheses is described
by Knoll and Jain in [KJ86, KJ87]. In this example, portions of the model
boundary are correlated in Cartesian space. If the segments match well enough,
the translation and rotation necessary to align the features are determined, and a
hypothesis is created. Verification is nearly identical to that in the LFF method.
What is unique about this algorithm is that the features are chosen to minimize
the total recognition time under the assumption that the model features and the
image boundary is searched in a linear fashion. Other correlational approaches
to 2-d recognition are described in [Fre77, DKZ79, YMASO, BBR83].

Ettinger [Ett88] extends the work of Knoll and Jain in the direction of im-
proving recognition time. He describes how employing a sub-part hierarchy can
markedly improve recognition time complexity. The features employed by his
system are those of the “curvature primal sketch”” [AB86]. The features are con-
tained in a scale hierarchy where the coarsest level of features is used to generate
the initial hypotheses about the subparts of an object. Subpart hypotheses that
have enough support in the form of more matching features at finer resolutions
of the scale hierarchy can generate full object hypotheses. These, in turn, can
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direct the search for other subparts. The full object hypotheses are hierarchically
verified through the subparts.

The method described in [TFF88] is a HVP method that has been designed
with parallel implementation on the Connection Machine [Hil87] in mind. Fea-
tures are line segments and corners (corners are line segments whose endpoints
are near to their intersection). Since the transformation space is 3-d, each image-
comer to model-corner correspondences allow a model transformation to be
computed, and a hypothesis to be generated. Since all hypotheses are generated
in parallel, an initial level of verification is performed by clustering the hypothe-
ses in the model transform parameter space. Clusters indicate hypotheses with a
large degree of mutual support. A multiscale Hough-like method is used to do
the clustering. From the clusters, an aggregate transformation is determined, and
a refined hypothesis is generated. Verification consists of comparing transformed
model line segments with image segments.

2.3 Predict-Observe-Backproject Paradigm

As its name implies algorithms based on the predict-observe-backproject paradigm,
or POBP, has three basic steps that are iterated. First, predictions are made about
what may be observed in the image. The predictions are based on the models
and the current state of the algorithm. Typically, the type, attributes, and pose
of features are predicted. Next, the image is examined for observed data that
match closely with the predictions. Assuming such a march is found, the impli-
cations of these matches are “backprojected” into the space of scene instances,
resulting in one of two outcomes: either the scope of feasible scene instances
is narrowed by the additional constraints induced by the match with the current
set of feasible scene instances, or, the induced constraints result in an incon-
sistent solution. When an inconsistent solution is generated, POPB algorithms
typically backerack.to a previously visited feasible soludon, i.e., one containing
a non-empty set of scene instances. This loop is iterated, usually resulting in
the tree-structured search that is the hallmark of the POBP.

2.3.1 Backprojection

The heart of the POBP is backprojection, the propagation of constraints induced
by a match between a predicted feature and an observed feature. Strictly speak-
ing, any algorithm that uses a match between model features and image features
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to calculate a viewpoint is doing a form of backprojection, though not neces-
sarily in its fullest sense. Therefore, all transformation clustering approaches
and many HVP methods employ a limited form of backprojection. However,
backprojection in its full sense requires a probability distribution on the space
of scene instances. For example, suppose that an image feature has been as-
signed to match a predicted model feature. Assume that these features consist
of triplets of primitive feature points. Further, for simplicity, assume that the
features can be considered to be object-attached. Therefore, the features each
possess six attributes, specifically, the z and y coordinates of each of the three
primitive feature points comprising each compound featre. Thus, under weak
perspective, a particular correspondence between the image feature and the ob-
ject feature will yield a unique solution, up to reflection though the image plane,
for the pose of the model that causes the predicted features to coincide with
the observed image features. That is, if the observed feature’s attributes are
known with full certainty, then a point in the observed feature’s atribute space
maps to two points in the scene instance space, as shown in Fig. ??(a). In
reality, however, a feature’s attributes are never known with certainty due to
noise and various other distortions. Rather, there is a probability distribution
on the feature attributes. Through the mapping from feature attribute space to
scene instance space, a probability distribution on the space of scene instances
is induced. Denote this probability distribution as P(s|f = f™), where s is a
scene instance (which may be the null instance), f* is the image feature, and ™
is the predicted model feature, and = indicates that f* matches f™. Figure ??(b)
illustrates the probabilistic definition of backprojection. This definition can be
carried further to the case of n matching image and model features. In this case,
the distribution is

P(slf;} Efz:’f;

2

=f,....5, =M0). (1)

Explicitly calculating these conditional probability distributions has never
been attempted owing both to the inherent intractability of the problem as well as
to the fact that the distribution is dependent both on the details of the model and
types of features used. What is typicaily done is to divide scene instance space
into regions R and -R such that P(s € ~R|f} =) < ¢, and work with
these regions rather than the probability distributions themselves. Figure ??(c)
shows an example of such regions. Following Cass [Cas88a, Cas88b], in the
following paragraph, we will refer to a region R as a match region because all
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Backprojection
Mapping

Figure 3: An illustration of noiseless backprojection. The vector of measured
attributes of a projected model feature is f. In this example weak perspective is
assumed, and, as explained in the text, features consist of triples of 2-d image
points and 3-d model points. In this case, perfect, noiseless measurements are
assumed. Thus, measured values for f imply that the model can have two
possible poses. Therefore, f backprojects to two points s, and s, in scene
instance space, as shown schematically.
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Figure 4: An illustration of backprojection in the presence of measurement error.
As in the case of Fig. 3 above, the vector of measured attributes of a projected
model feature is f. In this case, the measurement is not assumed to be perfect,
i.e., there is a probability distribution on f. Backprojection of this distribution
then induces a probability distribution on the space of scene instances.
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Figure 5: An illustration of a common approximation to full backprojection. The
situation is as in Figs. 3 and 4. Typically, full back projection, as illustrated
in Fig. 4, is replaced by a simple approximation, as shown above. Region
Ry, containing most of the probability density of f, backprojects to region R,,
which, in turn, contains most of the induced probability density. Most methods
that perform backprojection work with such regions, or further approximations
to them.
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scene instances s € R project f™ to within a neighborhood of f* defined such
that the undistorted value of f* falls in the neighborhood with probability 1 — e,

Backprojection alone is the basis of only one recognition algorithm that
we know of [Cas88a, Cas88b). This algorithm bears a superficial similarity to
the transformation clustering based methods discussed previously, but actually
differs in important respects. The work addresses 2-d recognition: rigid image-
plane rotations and translations of models are allowed. The viewing parameter
space for this method is therefore three dimensional. However, the idea is
general, and could be easily extended to recognition of 3-d objects from 2-d
images using appropriately chosen object-attached features.

Features in this algorithm consist of evenly spaced points on an image or
model boundary, along with the orientation at each point. Due to the isomor-
phism between the image domain and the model domain, the representation of
model and image boundaries and their derived features are identical.

For each correspondence between: an image feature and a model feature , a
match region is defined; i.e., regions where the projection of an of a model fea-
ture will result in a predicted feature whose attributes are within a neighborhood
of an observed feature. The size of the neighborhood models the amount of
distortion caused by the imaging process. In [Cas88a, Cas88b], match regions
are simply cylinders in the 3-d viewing parameter space. The dimensions of
the cylinder are chosen so that the transformed feature lies within a neighbor-
hood of the undistorted image feature with high probability. Consider, for every
pairing of an image feature with a model feature for a particular model, the
intersections of all of the match regions. Let every non-null intersection of two
or more match regions be called an “intersection volume”. Each intersection
volume constitutes a hypothesis that the model appears at a transformation con-
tained within the intersection volume with probability 1 — e. Clearly, the best
such volumes are likely to be those that are the result of the intersection of a
large number of match regions, as such intersections volumes are comprised of
the ransformations that place a large number of features near to the true image
feature with high probability. For each model, the intersection volumes that are
comprised of the intersection of greater than a certain number of match regions
are the hypotheses considered to be valid recognition results.

This algorithm is simple, elegant, and highly parallelizable, as was demon-
strated by its implementation on a Thinking Machines Corp CM-1 Connection
Machine [Hil87]. Match regions were represented by a uniformly sampled grid
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of points inside each region so that the intersections could be accomplished ef-
ficiently in parallel. A more refined version of the method, also described in
[Cas88a), uses approximations to the conditional probability distributions dis-
cussed previously to give even more accurate results.

2.3.2 The Predict Observe and Backproject Paradigm

Having examined backprojection, the heart of the POBP, in some detail, we can
now complete describing the POBP.

Prediction can also be viewed as forward projection. Given a probability
distribution on the error in an observed feature, backprojection induces a prob-
ability distribution on the set of scene instances. In contrast, in the case of
prediction, or forward projection, the probability distribution on the set of scene
instances induces a distribution on the attributes of a feature. This probability
distribution can be used to match observations during the observe step of the
cycle. That is, it allows us to assess the probability that a predicted feature falls
within a neighborhood of an observed feature in feature-atribute space. If the
probability is large, then the POBP may assign the predicted feature to match the
observed feature. The implications of this match are then found by backproject-
ing the measurement error distribution of the observed feature by recomputing
the conditional probability given in (1). Algorithms employing the POBP typi-
cally maintain a measure of the current goodness of the solution. One measure
is the volume, in scene instance space, for a given model, that contains a sizable
portion of the conditional probability distribution. If the volume of such a region
goes to zero, the solution can be considered inconsistent, and backtracking is
usually prescribed. If, on the other hand, a small region containing much of the
conditional probability exists, it is likely to be correct. Thus, the POBP usually
takes the form of a tree search, with each node representing an additional hy-
pothesized match between a predicted feature and an observed feature. If the
measure of the goodness of the solution increases above a threshold, then an
object is recognized. .

As mentioned previously, backprojecting the implications of a feature match
is difficult for the case of 2-d data and 3-d objects. This may explain why
there are few reported methods for using the POBP to recognize 3-d objects
in 2-d images. In matched dimensionality domains, by contrast, full-fledged
backprojection can be approximated in such a way that it becomes trivial. Thus,
there are a larger number of tree structured methods in matched dimension
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domains that fall into the category of POBP than in general domains. However,
the backprojection portions of these algorithms are somewhat atrophied. These
will be mentioned in later paragraphs.

Perhaps the two best examples of algorithms that employs the POBP for
recognizing 3-d objects in 2-d intensity images are the methods of Goad (Goa83]
and ACRONYM [BGB79, Bro81, Bro83, CCL84). We feel that Goad’s approach
is better overall. In particular, Goad’s method is actually has been shown to
recognize 3-d objects whereas ACRONYM has never been shown to work on
true 3-d scenes. Further, ACRONYM, while it has much to contribute, has
serious flaws that would prevent it from ever becoming a practical system. The
problems with Goad’s approach are of a more subtle nature, problems that VGD
has been designed to overcome. Therefore, we will describe Goad’s system as
the archetype of the POBP.

The features used by Goad’s approach are line segments. 2-d line segments
are assumed to be the result of the projection of one of the edges of one of the
polyhedral models. Thus, the method uses object-attached features.

Models consist of a list of the 3-d edge segments comprising a polyhedron.
Each 3-d model segment has an associated list of facets on a partition of the
viewing sphere from which it is visible, called a “visibility locus”. The viewing
sphere is partitioned into 218 view regions. The locii are represented as bit
strings that denote the union of some of the 218 view regions. Each visibility
locus for each model is precomputed since the locus does not change during
recognition.

At any time during the course of a solution, Goad’s system maintains a
current “locus of visibility”, denoted L, which is the current set of viewpoints that
could account for the visibility of the currently matched image and model line
segments. The locus L is Goad’s approximation to the conditional probability
density described above.

At the start of the algorithm, all possible model edges are considered can-
didates to match any model edge. Once the initial match is made, the visibility
locus L is initialized to the visibility locus of the model feature (the first back-
projection). Prediction is accomplished in two steps. First, an unassigned model
edge whose visibility locus has a non-null intersection with L is selected. The
second part consists of two cases: (1) assume the edge is visible; and (2) assume
that the edge is actually invisible. At first glance, this may seem to be contra-
dictory since, if L intersects the visibility locus of the currently selected model
edge, then it should be visible. Actually, this is not so, since the true viewpoint
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of the model may lie inside a portion of L that lies outside of the intersection
of L with the visibility locus of the edge. This situation is illustrated in Fig. 6.
In the case where the edge is assumed to be visible, L is updated to be the
intersection of itself with the visibility locus of the currently selected segment.
The position and orientation of the projection of the model edge relative to the
projection of the initially matched model edge is then computed as the view-
point ranges over the current visibility locus. The range of relative locations
and orientations, plus the known location of the first edge (since it has already
been matched), and some account for measurement error, provides bounds on
the location and orientation of image edges that could match the projection of
the model edge. If, after attempting to extend the match further, the algorithm
finds that the current match is inconsistent with the assumption that the current
model segment is visible then the algorithm assumes that the current segment
must be invisible after all. It then restores L to its state before the visibility
assumption was made, and then updates L to be the intersection of itself with the
complement of the visibility locus of the currently selected segment. If this in-
tersection is empty, the algorithm backtracks to a previous choice point. If there
is an intersection, the algorithm chooses a new model segment and continues
with a new prediction as in the visible case.

Observation is simply the process of checking the list of detected image
segments for those whose position and orientation fall into the bounds predicted
for the model edge we want to match. If any such image features exist, extend
the hypothesis to include one of them as a match.

Backprojection refines the visibility locus of the current hypothesis, L, by
restricting it to a smaller locus, say L', that is consistent with the measured pose
of the image feature that was matched to the currently selected model feature.
This is done by computing the pose of the current model feature at all points in
L and retaining those that result in the projection of the model feature having
the same relative pose to the initially matched edge as measured from the image
segment.

A hypothesis is accepted if its “reliability” is greater than threshold, and
backtracking occurs if L becomes null or if the “plausibility” of the match falls
below another threshold. “Reliability” is similar to “perceptual significance” as
defined by Lowe [Low87a]), and is thus synonymous with “non-accidentalness”.
Details on the calculation of the reliability measure are not given. However, it
appears to be done in a manner very similar to Lowe’s method. *“Plausibility” is
a measure of the likelihood that the edge detector would have missed the edges
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Viewing Sphere

Figure 6: L is the visibility locus of the current solution, and E is the visi-
bility locus of the model segment currently under consideration as a possible
addition to the hypothesis. The dot in L denotes the correct viewpoint, under
the assumption that the hypothesis so far is correct. Although E has a non-null
intersection with L (the dark gray region), the edge is actually not visible since
E does not contain the true viewpoint.

34



that were predicted to be visible in the current hypothesis. However, poor edge
detection is not the only way that edges that are visible can fail to be detected;
occlusion is another possibility. The algorithm does not take this into account,
and thus is restricted to recognizing largely visible objects.

Since the relationships between the features are all relative angular relation-
ships, the values of the viewing parameters not described by L, which include
image-plane translation, rotation, and scaling, can be determined by examining
any pair of edges. No fitting is done to improve the final estimate of the viewing
parameters.

ACRONYM (BGB79, Bro81, Bro83, CCL84], an ambitious system that has
been cited often in machine vision literature, also follows the POBP. The system
is complex, and its description will be heavily abridged in this discussion. Ob-
jects are modeled via an “object graph” which consists of two subgraphs. The
first is a subpart graph whose nodes are assemblies, and whose arcs are directed
from complex to simple assemblies. The other subgraph, called the “restriction
graph”, allows generic classes to be represented by placing bounds on the di-
mensions, number, and relative poses of subassemblies. These two subgraphs
are actually trees. The leaves of the trees are modeling primitives called “gen-
eralized cylinders”. Generalized cylinders (GC’s) are specified by a “spine” and
a “sweeping rule”. A GC is created by sweeping a cross-section, specified by
the sweeping rule, along the spine of the GC. In the general case, the cross-
section may change arbitrarily along the length of the spine, while remaining
perpendicular to it. Thus, GC’s are very flexible modeling elements. However,
ACRONYM actually uses a small subclass of all possible GC's. ACRONYM
allows GC's that have rectangular, hexagonal or circular cross-sections. Spines
may be linear or circular; GC’s with linear spines are allowed to have their di-
mensions linearly varied along the length of the spine, while those with circular
spines must have constant cross-sections.

Perspective projection of ACRONYM’s restricted class of GC’s results in 2-
d ellipses, trapezoids, and hexagons. The features that ACRONYM uses reflects
this: ellipses and “ribbons” constitute ACRONYM's feature set. A ribbon is
the 2-d analog of a a generalized cylinder. Ribbons are restricted to have linear
spines and sweeping rules, implying that they are actually trapezoids. The
trapezoids and ellipses are found by applying an edge detector then a linker
followed by a line finder [NB80]. Ribbons and ellipses are detected from the
line segment data, and become the nodes of the “observation graph™. Arcs of the
observation graph are relationships between features. Only connectivity between
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ribbons was implemented. The matching in ACRONYM is based entirely on
this ellipse-ribbon level of description.

Marching follows the POBP. At first, there are few, if any, constraints on
the poses of the objects and their component subassemblies. Thus, the possible
poses and shape attributes of the ellipses and trapezoids that could result from
the projection of any of the object graphs vary widely, allowing many possible
matches between predicted features and observed features. Later in the interpre-
tation process, the constraints on the poses of the objects and their subassemblies
reduce the variance in the attributes of the predicted features, reducing the num-
ber of observed features that are likely to match, as in Goad’s method above.
Predictions are placed in a “prediction graph” whose nodes consist of features
and bounds on their attributes, or, recursively, other prediction graphs. Arcs
describe relationships between the features, such as relative spine orientation
and connectedness.

Observation consists of querying:the observation graph for any features
that match primitives in the prediction graph and that are consistent with any
observed-feature to predicted-feature matches already in effect.

If an observed feature is assigned to match a predicted feature, then the at-
tributes of the predicted feature (which may be quite loosely specified) are set
equal to the observed feature. The implications of this match are backprojected
in the form of tighter constraints on the pose of the objects and their subassem-
blies, reducing the possible ranges of the viewing parameters and the model
parameters. The manner in which this is done is at the heart of ACRONYM,
and, in this author’s estimation, is one of the primary reasons that ACRONYM
never worked on true 3-d images. All transformations are represented symboli-
cally by products of primitive transformations, which, in turn, are parameterized
by various angles and displacements. The forward projection and backprojec-
tion mappings are, therefore, described by very complex, coupled sets of sym-
bolic trigonometric equations. A symbolic algebra manipulation system was
employed to propagate the effects of fixing a set of feature attributes back into
the object graph. The same system was used to propagate the new bounds on the
attributes of the predicted features that result from the tightening of the back-
projected constraints. The problem is that solving such systems of equations
exactly is intractable, so the system was forced to make liberal approximations.
The approximations could be so bad that the resulting upper and lower bounds
are useless in constraining the search.

While a great deal of effort was put into ACRONYM to handle general 3-d
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scenes, none of the results published have ever shown ACRONYM is able to
recognize general 3-d objects. Most results show interpretation of aerial scenes
from a fixed viewpoint, a problem that could be solved much more simply.
Extensions were shown for a set of switch parts [CCL84], however, only stable
poses were allowed. These situations reduce to 2-d recognition. Further, the use
of a restricted set of GC’s hurt the system, as well as staying at or above the
level of ribbons and ellipsed in the level of data abstraction, preventing lower
level information from strengthening or weakening interpretations.

Another POBP method for recognizing 3-d objects in 2-d intensity data is
described in [BAM86]. Features in this method are comners and line segments.
Large “blobs”, or regions enclosed by these features, are also found. The search
is tree-structured through the space of possible model-feature to observed feature
pairings. Backprojection consists of using either a least-squares method or a
method based on the ratios of the areas of blobs to find the transformation that
.best maps the model features onto the observed features. No effort is made to
approximate the conditional probability density; a single point in transformation
space is found, with the implicit assumption that some neighborhood of this
point is also valid. The tree search is guided by an admissible heuristic that
encodes information about the geometric mismatch between predicted features
and observed features, as well as noise in the feature detection process. Results
are given for images of wholly visible fighter planes.

There are two probable reasons for the relative scarcity of methods that use
the POBP 1o recognize 3-d objects in 2-d intensity images. One is that perform-
ing backprojection is very difficult in all but the most simplified cases, even
when object-attached features are employed. The second is that, empirically, it
appears that reliable recognition of 3-d objects in 2-d intensity images requires
that, at some level, the prediction be very complete. In contrast, most POBP-
based methads employ a sparse feature-based representation of the predictions
of the objects. They do this primarily to cut the combinatoric complexity, al-
though the complexity of performing a tree search in an inhomogeneous feature
space is also likely to be a factor. The incremental verification scheme of VGD
is directed toward handling this problem, while retaining robust performance.
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23.3 Matched Dimension Domains and the Predict Observe Backproject
Paradigm

POBP-based methods that operate in matched dimension domains are more plen-
tiful than methods that operate in general domains. This is partly because back-
projection becomes simpler, amounting to nothing more than alignment of model
features with observed image features to within measurement errors. In addition,
less complete representations of 2-d predictions can be used and still result in a
a robust approach, allowing a tree search in a homogeneous feature space to be
used.

There are several well-known examples of such approaches. One of these
is the method described in the following papers by Grimson and Lozano-Perez
(Gri88a, GLP84, GLP85, GLP87]. This method is applied both to recognition
of 3-d objects from sparse range data, as well as recognition of 2-d objects
in 2-d intensity images. The approach for recognizing 3-d objects in range
data 3-d approach is described; the 2-d case recognition case is completely
analogous. Both models and images are represented in terms of their features,
planar patches. The method searches an “interpretation tree” (IT), whose nodes
consist of all possible strings of observed-feature to model-feature pairings. The
length of the strings corresponds to the depth of the node in the tree. Observed
features may also be paired with a “null face”, indicating that the feature is
spurious with respect to the current model. The pairings are first “filtered” by
clustering the model-feature to image-feature pairs in a subspace of the full
6-d viewing parameter space using a Hough approach. Branches of the IT
that have pairings that belong to the same cluster are regarded as more likely
to represent valid interpretations. Early versions of the method [GLP84] used
decoupled geometric constraints between pairs of observed features and model
features to prune the IT, i.e., a branch is pruned if the latest set of two pairs of
model features and observed features do not have the same relative geometric
relationship, to within measurement error. Thus, the search never explicitly
worked in viewing parameter space, and so there was no backprojection step.
More recently, however, the authors used full coupled constraints that consist of
determining the viewing parameters based on the features matched so far. This
constitutes a simple form of backprojection, to prune the IT. If backprojection
indicates that there is no set of viewing parameters that can map the model
faces onto the observed patches to within measurement tolerances, then the
branch is pruned. The search of the IT proceeds in depth-first fashion until the
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interpretation becomes valid, or is pruned. An interpretation is considered valid
if it explains a large enough portion of the area of the range image.

This method has been extended to work with curved objects in 2-d [Gri89,
Gri88c] and parameterized 2-d objects [Gri88b]. There are a number of MDD
methods that are very similar to the one described above. They include [Gre86,
KK87, FH&3, AFF84, AFFT85, AF86, MC88, PILSL88].

An interesting algorithm is described by Van Hove in [Hov87]. This method
is very similar to the early version of Grimson and Lozano-Perez’s algorithm
wherein the branches of the tree search were pruned using pairwise geometric
relations between features. The novel part of Van Hove's approach is that this
idea is used for 3-d recognition from 2-d intensity images. This is suprising
because such geometric relations are highly dependent on the viewpoint, and
may take on a wide range of values over the viewing sphere. Such wide ranges
on values of the attributes of the geometric relations reduce their pruning power.
Grimson and Lozano-Perez’s method 'needed only to account for measurement
error, which it typically much smaller in magnitude than the variations due to
changes in viewpoint. Since Van Hove's method is very similar to Grimson’s
method, and since it performs no backprojection during its tree search phase, it
is discussed here rather than ecarlier in this section.

Van Hove's method employs pairs of linear edge fragments as features. The
key to the method is a preprocessing step where each model is rotated to all
possible views in a densely populated sampling of the viewing sphere. The range
over which each feature’s attributes vary is recorded and stored as part of the
model. The space of image-feature to model-feature pairings is searched, as in
Grimson and Loazano-Perez, without the use of Hough clustering as a heuristic.
At each node, a model feature is allowed to match an image feature only if the
image feature’s attributes are within the allowable precomputed bounds of the
model feature’s attributes. If not, the branch is pruned.

Were the tree search the only means of finding valid interpretations, it is
likely that Van Hove’s method would not work well. As it is, the tree search
is used only to generate good hypotheses for testing, somewhat in the spirit of
Bolles and Cain [BC82]. During the hypothesis test, the features matched by the
tree search algorithm are used to compute an estimate of the viewing parameters
of the model. These, in turn, are used to generate a more complete prediction
of the appearance of the model, which is then compared to the image to decide
which hypotheses represent valid interpretations.

39



2.4 Global Feature Methods

A global feature is a feature whose attributes are calculated based on the en-
tire region that an object occupies in an image. Typically, global features are
shape descriptors, i.e., their atributes encode the shape of the region that the
object occupies. Usually they are constructed to be invariant to image-plane
translations, rotations, and scalings. Thus, ideally, their attributes change only
when the shape of the object changes. Under weak perspective, the usual imag-
ing assumption for such methods, this can happen only when the viewpoint
changes.

By their nature, methods that rely on global features assume that an object
has been accurately segmented from the background, leaving only the problem
of identification. In certain domains, this is a reasonable assumption. In most
domains, however, such segmentation is very difficult. Because of this, global
feature methods are of little practical value. However, in their favor, unlike all
other methods that have been examined so far, these methods do not employ the
object-attached feature assumption. This follows because the region over which
a global feature is calculated is the silhouette of the object, and, as shown earlier,
any feature depending on the shape of the silhouette cannot be object-attached.

Since global features are not object-attached, analytic methods for deter-
mining the viewing parameters of the model given the values of the feature’s
attributes do not exist. Therefore, the mapping from feature attributes to view-
points must be precomputed and stored in a form of muitiview model. Indeed,
it is a trademark of global feature methods that they employ some type of mul-
tiview model.

There are many types of global features. Some common examples are area,
perimeter, compactness (ratio of area to perimeter squared), Fourier descriptors
[PE77, Gra72] and Wigner distributions (JW84], and moment invariants [Hu62,
Tea80, AMP84, TC88].

Matching in global feature methods is usually very simple; most of the effort
goes into computing the features. The preprocessing stage creates a multiview
feature representation for each model by calculating the feature vector for each
model for a large number of views, usually approximately uniformly spaced
over the viewing sphere. Most methods do this by graphically rendering the
silhouette of 3-d CAD models of the objects, although some have simply taken
images of a physical model over the viewing sphere [DBM77]. At recognition
time, an image is processed by segmenting the object region and calculating the
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feature vector from it. Then, the feature vectors stored in the multiview models

Typically, no further verification is done.

A good example of a global feature method is that described by Dudani er
al in [DBM77]. The features used by this method are momens invariants. There
are several flavors of moments and invariants. Dudani er g/ use the standard
central moments and the invariants found by Hu [Hu62] using the theory of
algebraic invariants. A moment is defined as:;

., = /N /°° 2%y 0(z, y) dz dy, p,¢=0,12,..., (2)

where p(x, ) is an image function. In the method at hand, if S is the set of
silhouette points in the image, then p'= 1 if (z,y) € S, and p = 0 otherwise.
The central moments are defined by

Hpg = ./_; /.’N(.r - Ty - 7)%(=, y)dz dy, Pg=0,1,2,.. (3)

where
Z = myo/meo,§ = Mo1/meg.

Central moments are invariant to translations of the silhouette, Using the theory
of algebraic invariants, it is possible to combine the central moments so that
they are invariant to image plane rotation and scaling as well. For example, the
invariants of order two, i.e., p+ ¢ = 2, are:

Koz + pa0,

(M20 — poz)* + 4ul,.

Dudani ez al used the seven lowest order invariants, Higher order invariants
have been shown 1o be sensitive to noise (Wie83, AMPS4, AMPSS, TC38].
The feature vector was fourteen clements long: seven of the invariants were
computed with § as the entire silhouette region ( while the other seven were
computed using S as only the points on the silhouette boundary.

A multiview model was constructed by taking images of the models to be
recognized at 5° increments of the Euler angles parameterizing the viewing
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directions, and, for each view, calculating and storing the resulting fourteen
element feature vector.

Recognirion consisted of taking the binary silhouette, calculating its 14 mo-
ment invariants, and searching the multiview models for the feature vectors that
are most similar using the distance-weighted k-nearest neighbor rule [Dud76].
The viewing direction that yielded the most similar feature is reported as the sys-
tem’s recognition result. This system does not actually make a decision about
whether the object is present or not, and so arguably, does not perform true
recognition.

Other global, moment-based methods include those described in [RT89,
TR87, BFR6, Ree81, RPT85]. There are a number of methods based on nor-
malized Fourier descriptors as well [WM80, WW80, WMF81, Kuh84, SD71].

2.5 Optimization-Based Methods

" Optimization based approaches are superficially similar to VGD’s tracking mod-
ule. These methods usually generate some kind of global disparity measure
based on the shape-disparity between curves or regions in the image and the
rendering of curves or silhouettes derived from a 3-d model. The disparity
measure is a function of the viewing parameters. Since the viewing parameters
form a continuous space, and the disparity measures are themselves made to be
smooth functions of the viewing parameters, continuous optimization procedures
may then be used to search the space of scene instances for the minimum of
the disparity measure. If the disparity resulting from applying the optimization
procedure is small enough, an object is recognized.

While the approach is, in principle, sound, there are a number of difficulties
that plague these methods. The most serious is the problem of local minima.
Any continuous optimization procedure uses local knowledge of the similarity
function to drive its search. Unfortunately, local information yields no informa-
tion enabling a local minimum to be distinguished from the global minimum,
thus there is no way for an optimization procedure to distinguish a local mimima
from a global mimima. Therefore, these methods often become trapped in local
minima of the disparity measure.

Another problem is the disparity function itself. The nature of the disparity
measure impacts the number and severity of the local minima, as well as whether
the method can find partial instances of objects. The problem of local mimima
is often dealt with by starting the optimization at many different points in scene-
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instance space, choosing the best result, and hoping that the best result is the
global minimum. This is both time-consuming and unreliable. Recognition of
partial objects is not possible with the reported methods.

While optimization-based methods have difficulties, they have the advantage
that any features, not just object-attached features, can be used. If their other
problems could be solved, they would be able recognize wider classes of objects
than other methods. The tracking approach of VGD goes much of the way
toward solving these problems, opening the door to this goal.

A recent optimization-based method possessing some parallels with VGD is
described in by Stark er al [SEB88]. Models in this method are polyhedra and
an associated aspect graph. As mentioned previously, an aspect graph is a set
of topological equivalence classes over the sphere of viewing directions. In this
case, the edges of the polyhedral models are rendered under perspective, with
hidden lines removed, and the resulting views are grouped by the equivalence
of the topology of the resulting set of 2-d line segments. Each such equivalence
class is called a “cell”. Associated with each cell is a set of viewing parameters
that generate a “prototype” instance of the object. The essence of the method is
to use these prototype model instances as starting points for optimization. The
authors argue that the aspect graph provides a partition of viewing parameter
space that will be likely to have separate local minima. Thus, the optimization
is started from every prototype model instance, and it is constrained to remain in
the cell during the optimization. The best result is then selected as the recognized
object.

The idea of attempting to systematically isolate local minima is a good
one, and is somewhat similar to the approach of VGD. However, VGD uses
a feature indexed associative memory to retrieve only those views that have
matching features rather than attempting to start from every possible stored
view, or aspect, as this method does.

While there are some parallels to VGD the optimization portion of the
algorithm is rather different. The system processes an image to extract a line
drawing of the image, and, treating it as a graph with vertices as nodes and
segments as arcs, selects a unique subset of the set of all possible circuits in the
graph. These circuits are the “elementry” circuits of the graph, and correspond
to the faces of the imaged polyhedron. Next, a Fourier descriptor representation
of each such elementry circuit is computed. The figure of merit for the match is
computed by projecting the model using the current set of viewing parameters
(as obtained from the optimization algorithm), and Fourier descriptor features
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are computed as for the image features. The algorithm examines all possible
pairs of image circuit Fourier descriptor features with those derived from the
model to determine the “best” match. Using this match, a “figure of merit” is
reported (not described in the paper) that is used as the cost function. The cost
function is optimized using the method of damped least squares.

Note that this method requires the entire object to be visible. In addition, the
method works only for simple polyhedra, as complex polyhedra have intractably
large aspect graphs.

There are a number of earlier examples of optimization-based methods. The
method described in [WS82] uses the Levenberg-Marquardt method to optimize
the squared distance between the Fourier descriptor representations of the image
edge contours and the projection of a space curve. The approach described in
[HW75] uses gradient descent to optimize a matching metric consisting of the
sum of distances between corresponding points on the image edge contours and
the silhouette outline. The system described in [MGAB88] is interesting because it
describes connectionist matching network, and, further, includes both a subpart
hierarchy for models and a class hierarchy, expressed in the form of isa and
ina links in the model network. Possible instantiations of model entities are
connected to all possible matching model parts and subparts by matching nodes.
The strength of the matching nodes are adusted to maximize the consistency
of the match. The consistency of a match is computed using “consistency
rectangles” which, essentially, describe the similarity of binary relations in the
image to binary relations in the model.

Local minima are reported to be problematic in all of the methods described
above, resulting in limited success. In all cases, continuous optimization methods
were used. Discrete optimization methods, such as simulated annealing [Rut89]
and dynamic programming [ATW88) could be used, but they are more inefficient
than continuous methods. A better solution is to use additional information to
provide good guesses as to the location of the global minima. This idea is at the
heart of VGD, and opens the way to the recognition of occluded objects using
general, not just object-attached features.
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Appendix B

Review of 3D Model Acquisition Techniques

The modeling of three-dimensional objects using multiple camera views is an active
research area in computer vision and is poorly defined at present. The goals of this research
have ranged from rendering realistic environments for simulation, modeling of the world for
intelligent robot navigation, acquiring three dimensional models for object recognition, to

The different research efforts can also be described by the type of input data and the
object representation scheme used in fusing the data. Intensity and range images are the two
most commonly methods for inputting data. Intensity data is typically captured with video
cameras, while range data is collected using either a laser-range camera, structure lighting, or
stereopsis. The sensor used dictates the type of information that can be recovered. Structure
lighting yields sparse but more casily registered range data points than dense range maps.
Dense range maps are constructed slowly with a laser rangefinder that scans an object scan-line
by scan-line. Conversely, intensity data can be instantaneously captured by inexpensive
sensors. However, such images do not yield depth information directly. In addition, techniques
such as stereopsis must be applied to recover range data.

To build up a complete model of an object, the data from different images must be first
registered and then combined. Data has generally been registered using a) a fixture to hold an
object at well-defined view angles, b) a fixed array of lights and cameras to capture the image
data, or c) registration points on the surface of an object, where a sufficient number of points are
shared between views to register the views. Multiple views of an object must be combined in
order to capture the shape of a 3D object. Viewpoints can be constrained to 3 (orthogonal) or 13
positions to yield an efficient fusion algorithm. Fusion of data can be performed efficiently if
the objects to be modeled are of some specific type, eg. polyhedral and cylindrical objects.
Similarly, fusion can be simplified if object silhouettes can be obtained.

Finally, different representations have been used to model objects and for their
reconstruction. The three basic categories have been volumetric, boundary, and wire frame
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models. Object models can be further organized by decomposing an object into modeling
primitives. For example, volumetric models have been used that have volume elements, i e,
voxels, as their basic modelling primitives. Surface patches, on the other hand, are used to
construct surfaces in boundary models. Lastly, coarse models can be derived by composing an
object from generic primitives, such as cylinders and ellipsoids. In order to capture accurate
surface detail, the VGD system will employ boundary models of surface patches for the 3D
objects to be modeled.

1 Volume Intersection

A very popular data structure used for volume intersection are octrees. Octrees are iD
counterparts of quadtrees [Sam85], a hierarchical data structure for image regions. An octree is
a true volumetric model representing a 3D object space, defined by a right-handed object
coordinate system, to contain a 21 x 20 x 20 array of volume elements called voxels. A voxel,
the 3D equivalent of a pixel (picture element), is assumed to contain a homogeneous volume of
material and can be either occupied or vacant. It also defines the resolution of the modeling
system. The usual shape of a voxel is a cube although a rectangular parallelepiped could be
used in a more general system. |

The volume of the array of voxels is called a 3D voxel universe and it is aligned with the
object coordinate system. It is assumed that all objects of interest are within this universe and
remain there during all operations. The space outside the universe is assumed to be void of all
objects. An octree is an 8-ary tree structure generated by a recursive subdivision of the
modeling universe into octants until homogeneous blocks of voxels are reached. If an octant
does not consist entirely of the same type of voxels, then it is further subdivided until
homogeneous cubes, possibly single voxels, are obtained. The root of an octree is at level 0 and
the voxels are at level n.

The generation of octree models of 3D objects consists of three steps. The first step
generates conic octree volumes with the silhouettes of objects projecting from the image plane
into the octree universe. The second step combines a sequence of such conic volumes into a
model of the objects using simple volume intersection. The last step enhances an octree model
by labeling individual objects, adding surface-normal vectors, and mapping intensity textures
and other intrinsic properties on the surfaces of these objects.
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of the construction process but enables one to derive simple and fast algorithms for handling
(simple) common cases. A variety of data structures for encoding an octree have also been
derived for specific performance advantages in processing speed and storage overhead. These
differences and their corresponding systems are highlighted below.

1.1 Review of Volume Intersection Systems

[Pot87] does the volume intersection by back-projecting the octree universe into the
image plane. The silhouette of a perspective projection of a cube into an image plane depends
on the relative position of the center of Projection of the image and the coordinates of the six
faces of the cube. The faces partition the 3D space of the cube into 27 half-spaces: 26 outside
and 1 inside. The index number of a partition that contains the center of projection, relative to
the current octree node, is used to find, in a lookup table, the number of silhouette vertices and
their coordinates. The coordinates of the cube vertex are projected into an image plane using 12
lookup tables for the object-to-image space transformations. The polygonal silhouettes of the
objects, defined by the vertex coordinates, are then approximated by their bounding rectangles
encoded as quadtrees. Each polygon is finally raster-scan converted for volume intersection, ie.
the pixels inside the polygon are determined in scan line order and are individually compared
with the contents of the (binary) image.

This is one of the more flexible octree schemes but the overhead in arbitrary back-
projection of the cube and the individual raster-scan conversions is high. Moreover, it requires
good camera calibration and viewpoint registration techniques to compute accurate object-to-
image space transformation for each image.

Instead of performing the costly perspective backprojection, view cones can be projected
into the octree universe and intersected directly in 3-space. [Nob88a,Nob88b] constructs
polyhedral view cones for each image and projects them into the cube for volume intersection.
If a view cone is not convex, it is defined as the union of partitioning convex cones. The cones
are then used to check and classify the eight subregions of the parent cube as inside, intersecting
and outside each convex cone. Cone unification rules are next used to do the same
classification for the eight subregions with respect to each non-convex cone. Lastly, cone
intersection rules are used to integrate the information on the subregions from the multiple view
cones into the common region. A DF (Depth-First) representation (Kaw80] for linear encoding
of the initial eight subregions is generated and recursively applied during model construction.

This octree building algorithm does not build a complete octree for each cone, but instead
builds only a part of the octree within the common region. It is thus able to process an
arbitrarily selected region in 3D space independent of all other region. The procedure is fast
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when restricted to polygonal silhouettes. More complex contours can first be approximated by
linear segments but at the cost of processing a larger number of convex cones and introducing
additional digitization inaccuracies. Accurate viewpoint positions are needed for the
projections into the cube.

The above approaches are flexible but computationally expensive. An alternative is in
restricting the possible viewpoints to yield simple and fast algorithms for handling specific
cases. [Chi86a,Chi86b,Chi89) constructs the volume/surface octree from silhouettes obtained
at three orthogonal views. Each occluding contour, encoded into the "principal” quadtree of the
associated silhouette, is first fitted with a tension-spline [Sch66] to allow better approximations
of the contour normals and hence more accurate surface information. With scaled orthographic
projection along the viewing directions, each of the three "principal"” quadtree sweeps out an
oblique cylinder into the cube. Since sub-cylinders inside this volume may be identical, its
eéxact octree can be replaced with a pseudo-octree that contains no identical subtrees. These
orthogonal pseudo-octree are then intersected using simple tree traversal techniques to obtain
the resultant model octree [Jac80].

This approach may be useful for simple objects that are symmetric along its three
principle axes. The major disadvantage, on the other hand, is the inability to guarrantee that all
significant features will be captured by the constructed model.

[Ahu89] considers a less restrictive case in using silhouette images obtained from any
subset of 13 orthographic viewing directions. By restricting to these 3 "face” views, "6 "edge"”
views and 4 "comer” views, a simple relationship between pixels in the image and the octant
labels in the octree is derived. The detection of intersections between the octree and the objects
is thus replaced by a simple table lookup operation between a pair of views.

This approach provides more accurate information with the higher degree of
reconstruction accurarcy but it still has problems. Discontinuities cannot be modelled, as
evidenced by the approximation of object edges by rectangular steps. The proposed set of 13
viewpoints is not sufficient to build accurate modelis. The number of viewing samples needed
for building an accurate model is arbitrarily large. The number of viewpoints necessary for
reconstruction to within a desired accuracy depends on the viewing direction and the target
object.

- [Car85] proposes a solution for modelling discontinuities with the polytree model. It
attempts to include more surface information with three extra classes of voxel structure: vertex
cell, edge cell and surface cell. The result shows only negligible improvement. A forerunner of
the octree is the "volume-segment” representation proposed by [Mar83]. It borrows scan-line
techniques from computer graphics to construct a 3D object model from the bounding volumes
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carved out by the occluding contours. A wire frame with planar polygonal facets is then
derived from the volume segments. This approach is slow, inaccurate and suffers from the
usual problems associated with silhouettes. [Cap87] extends it to handle real images of parts
and compares the constructed models with renderings of the original CAD designs.

Other less attractive volume intersection techniques have been proposed.
[Che88] constructs a 3D model from a set of 3-view (orthogonal) type line drawings. Objects
are restricted to polyhedral, cylindrical and composites of the two that are not rotationally
symmetric objects. The object must be decomposable into subparts for individual
reconstruction and then merged to form a Constructive Solid Geometric (CSG) [Man88]
representation of the object. [Ide86] has an even more restricted system that reconstructs
models of only polyhedral objects from a set of 3-view type drawings. [Sha86] uses simulated
2.5D sketches containing only depth information for their model construction but their
volumetric representation and algorithms show no advantages over octrees. Similarly [J iy86]
describes an iterative 3D algebraic reconstruction technique with results for two synthetic test
models under a variety of projections. The technique is, however, primitive compared to
octrees.

1.2 Disadvantages of Octrees and Volume Intersection

Octrees are an elegant data structure which enables a simple implementation of volume
intersection for model construction. This advantage is, unfortunately, offsetted by numerous
problems.

One difficulty is that octrees can only provide coarse models of 3D objects.
Astronomical storage and Processing overhead are required to capture surface details accurately.
Furthermore, the models are unstable and not invariant to rotation and translation. Thus,
completely different octrees have to be constructed for slight changes in voxel resolution or
object position.

A second problem with volume intersection, in general, stems from the dependence on
silhouette information. First, using silhouettes requires reliable contour extraction and
smoothing techniques. Second, silhouettes do not generally capture surface concavities and
object self-occlusion effectively. Third, digitization effects during volume intersection often
result in false boundaries in the final model.

There are possible remedies to some of these problems. For example, fine details can be
generated with surface interpolation over the voxels with more (post)processing. The accuracy
of this process depends, however, on the initial octree approximation. An alternative would be
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to use long sequences of frames to refine an octree. This, however, requires that the best views
be selected, a difficult problem for unknown objects. Typically, arbitrary decisions are made on
the trade-off between accuracy and computation, and the trade-off between coarse and fine
resolution.

Not surprisingly, all experimentation with octrees to date has only been done with
synthetic data.

2 Surface Patch Fusion

In general, surfaces can be expressed in an implicit or explicit form [Bol89]. An explicit
form of a surface is the graph of a function of two variables. Let f: UcR® . R. The graph of
f is defined to be the subset of Ro+! consisting of the points Xypeee X, f(Ry,....%3)) fOT (X,,..,%.)
¢ U, where U is an open subset of R, The implicit form of a surface in R3 space is expressed
as a set function f: R¥3 . R | f(x,y,z) = constant, where (x,y,z) are Cartesian coordinates of the
surface points. The explicit form is a special case of the implicit equation and is sometimes
referred to as a Monge patch. Another useful representation of a surface is the parameterized
form. A parameterized n-surface in Rn+k (k20) is a smooth map ¢ : U - R%*, where U isa
connected open set in R®, such that 3¢, is non-singular (has rank n) for each P ¢ U (which is
called the regularity condition). A parameterized n-surface in R? is simply a regular smooth
map from one open set U in R” onto another.

These surface patches are integrated together in an adjacency graph for the final
representation of a 3D object. An adjacency graph is basically a bidirectional graph with each
node representing a region and the links between nodes the region connectivity relationships.
Such a graph is not, however, restricted to describing surfaces but can directly incorporate

The standard model construction Pprocess has four major steps. The first step of
segmenting the image into coherent regions can be driven initially by edge detection or region
growing [Bal82,Hor86). In the former method, the areas bounded by the extracted edge points
are connected and tested for coherence as segmented regions. In the latter method, image pixels
are grouped together on the basis of region coherence using intrinsic surface properties derived
from differential geometry [Bes86]. In the second step, the surface patches derived using a
least-squares surface fit are either labelled with an unique symbol, or described in terms of
parametric equations. The patches may be recursively combined to form larger entities as long
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as some coherence predicate is satisfied. The third step relates the various surface primitives in
an adjacency graph. Information on the different properties of a surface, such as reflectance and
texture, may also be included at each node. Lastly, integration of multiple views is done via the
transformation of the graph constructed from a new view to the global coordinate system, the
matching of corresponding nodes in the two view graphs, and the modification and/or insertion
of surface primitives to refine the relational object description.

2.1 Review of Surface Patch F usion Systems

models of objects from multiple views, only results for a synthetic image of a single convex
polyhedral object are demonstrated. To simplify the learning process, objects are restricted to
be planar and convex and usefui viewpoints that are known in advance. [Dan82] constructs a
model from four image views for a single object. Partial results for nine sets of synthetic data
are produced by an incomplete system. [Osh79,0sh83] consider multiple 3D objects in a single
range image. Region growing at multiple, successively more abstract resolutions is used to
generate an incomplete relational model. ’

segmentation of the input image, a highly abstract semantic net relating the regions and object
models is built for the environment. [Xie86a,Xie86b] outlines an expert system that constructs
a relational model of a scene using artificial 2.5D sketches. No result/output is shown.

composed of hinges, slides and solids. The modeler leamns the number of these features and the
relationships between lines and vertices in image. Results are shown for a pair of compasses,
essentially a 2D object, lying on an uncluttered tabletop. [Bak77] describes a scheme used in

irregularities in the the region boundaries are then correlated to construct the 3D object model.
[Yac75] analyzes images of objects taken from a nearly vertical direction by a TV camera.
After simple thresholding and contour tracing of the object outline, the object model is
constructed as a list of propeties.



[Vem86,Vem87] scans objects resting on a base plane with a laser. The range image is
segmented into regions that are a collection of surface patches homogeneous in certain intrinsic
surface properties. A straight line on the plane is captured in intensity images. It is used as a
calibration mark for calculating interframe transfrormations. Simple averaging is then used to
merge two overlapping views. [Lau87] constructs simple and incomplete relational models of
(convex or non-convex) polyhedral objects. Jump boundaries are extracted from a 3D range
image by gradient-based edge detection. The edge points are used to generate occluding and
interior contours which segment the object from the image background and into coherent
regions. The hemispheric histogram, a specialization of the Extended Gaussian Image, is used
to extract surface orientation information in detecting corresponding regions in an image of
multiple objects. Regions, however, can not contain holes and undersampling may occur with
increased obliqueness of a facet.

[Her84a,Her84b,Her86) incrementally constructs a 3D model of complex scenes from
multiple images. Stereo and monocular analyses are performed for image data collected at
different viewpoints. Linear structures representing building boundaries are extracted from the
images and combined with hypothesized new vertices, edges and faces, using task-specific
knowledge on block-shaped objects in an urban scene. The edges and vertices from such
analyses are then used to construct the 3D wire frames. The MOSAIC systems handles very
complex scenes but in order to achieve success, a lot of assumptions and constraints have to be
used: task-specific knowledge on urban scenery, trihedral polyhedra scene primitives, and
limited linear 3D scene features of edges and comers. Due to the task complexity, the matching
of junctions in the scene is slow and the scene interpretation is incomplete. Surface detail is
provided as simulation by registering image regions with object surfaces.

[Ste86,Con86,Con87] constructs 3D models of polyhedra objects. The objects are placed
on a tumtable and scanned by a laser stripe. Wire frames are built from connected chains of
curvature and step edges approximated by straight line segments. They are fleshed and adjusted
before obtaining a least-mean planar fit of the surfaces bounded by viewplane cycles (closed set
of edges and vertices). A refined model is produced by intersecting the view polyhedra from
multiple views using a boolean intersection algorithm impiemented in the GEO-CALC system
[Bar86]. Surfaces are rendered with a Lambertian scattering model. This system is restricted
by the need of placing the polyhedral objects on a tumntable. No surface detail such as texture is
modeled by the wire frame representation.

Instead of just surface patches, [Fer85,Fer88] take the surface patch representation a step
further. A 3D object model from multiple views is derived in terms of volumetric primitives
such as ellipsoids and cylinders. This is done by taking the intrinsic surface feature points,
derived on the basis of surface principle curvatures, and grouping them together to form
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extremal and parabolic contours for parsing a surface into patches. 3D surface point
correspondences for multiple views is done by normalized cross-correlation of the feature fields
in the surface graphs. In matching candidate feature neighborhoods between views, the
interframe transformations are recovered to construct a composite surface graph for the object.
This composite surface graph, realized as a set of dynamically intrinsic images (DI0), is used in
the geometric inference process to identify the volumetric primitive associated with a patch (or
set of patches) and to obtain the primitive’s parameters. Mulitple primitive instantiations for
the same subset of image data is resolved via shape similarity functions. Results are presented
for a symmetric synthetic image and a range image of a statuette. The final models based on
inferred volumetric primitives are coarse and imprecise. Not only very little surface detail is
captured, the modeling accuracy of the selected set of primitives is not obvious.

(Hu89] recovers 3D surface points for a scene containing multiple objects using structure
lighting with a uniform grid. Either a striped image or a gray-scale image can be taken by
merely switching the lights of the projector and the global coordinate system is fixed on the
worktable. A calibration procedure computes the tranformation matrices M (worktable-
camera) and Mp, (projector-worktable) for computing the position of a surface point. After
extracting the network of light stripes, geometric and topological constraints are used to
hypothesize and test matches for solving the line labelling problem. The geometric and
topological constraints are based on the uniqueness constraint (C 1) and the continuity constraint
(C,) of [Mar76]. Based on using these two sets of constraints for disambiguating surface
solutions, [Hu89] presented five algorithms for 2D network extraction, single 3D point solution,
single 3D network solution, network boundary extraction, and scene solutions. This approach is
guided by three basic assumptions. First, objects in the scene are solid, static and opaque.
Second, object surfaces are smooth and are of low order in the sense that the spatial frequency
of surface undulation is less than the stripe frequency. Third, surfaces are much larger than
stripe spacing so that a surface patch is covered by a multistriped network.

[LeM85)’s approach is based on the observation that the type of range data to be collected
will differ with regard to sampling frequencies (in space and time) and resolution of range
texture. A grid of horizontal and vertical lines including several dots is projected onto the
scene. The dots are used as landmarks for initiating the line labelling process and "covers" the
entire image. The camera and projector are separated by a vertical baseline so that range
information is apparent in the distortions and discontinuities of the horizontal lines. The
vertical lines are used to guide the extraction of the horizontal lines and to normalize the albedo
variations. Grids can be designed with pattemns of different thickness to be used for a multj-
resolution range sensor. Associated with the finite thickness of the lines is an inherent
“smoothing” of range texture. Higher frequency of range discontinuities cause the thinner
projected lines to break up, whereas the thicker lines display very little distortion. A simple
formula relates this smoothing of range texture to the thickness of the grid lines. In particular,

9



[Pot79] uses a pair of images containing a single object for such model construction. The
object is pattern-illuminated by photogrammetric techniques and imaged under perspective
Projection inside a calibration fixture, Calibration marks on the fixture are extracted using the

[Ver87] describes a method of obtaining 3D replica made of polyurethane foam from an
arbitrary part of the human skin, An integrated system consisting of a photogrammetric stereo
restitution system and a CAD system integrated with a NC 3D milling machine is used in



small mark seals are stck on the statutes during the day and structured light patterns are
projected onto the statutes during the night. Partial sterreo mathcing is done by dynamic
programming and the epipolar line search. The correspondence search is completed with
manual pointing by a human operator to construct the final range map. Results for images at a
single viewpoint are demonstrated. [Sat87] obtains range data using the Liquid Crystal Range
Finder (LCRF) based on a nematic liquid crystal mask [Sat86b] and Gray coding {Ino84]. The
3D model of an object on a turnatable is then constructed from a set of such range images taken
at multiple view. The global coordinates is calibrated with respect to the floor (z-plane) and the
rotation angle is calibrated against a reference cube. The wraparound 3D data is derived from
horizontally sliced contours. Experimental resutlts is shown for one statuette.

2.2 Advantages of Surface Patch Fusion

Compared with volume intersection, the surface patch fusion approach yields surface
models of higher accuracy and detail. It allows direct incorporation of surface reflectance
properties during model reconstruction. It minimizes necessary storage and processing
overheads. And last, nut not least, the parametric form for representing surface patches is
invariant to motion. )

Currently, robust techniques exist for calibrating cameras, calculating interframe
transformations, recovering range information via stereopsis and triangulation, computing and
reconstructing 3D surface solutions, and fusing 3D surface data from multipe views. The best
work in this area are exemplified by the systems of [Pot79,Hu89,Sat86a] as described above.
Although they are incomplete and experimental in nature, they show considerable promise.
Undoubtedly, a automatic model acquisition system can be realized in the near future.
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